000844844 001__ 844844
000844844 005__ 20240712112828.0
000844844 0247_ $$2doi$$a10.2136/vzj2016.10.0099
000844844 0247_ $$2Handle$$a2128/17945
000844844 0247_ $$2WOS$$aWOS:000439692900001
000844844 037__ $$aFZJ-2018-02195
000844844 082__ $$a550
000844844 1001_ $$0P:(DE-Juel1)129503$$aMerz, Steffen$$b0$$eCorresponding author
000844844 245__ $$aMagnetic Resonance Monitoring and Numerical Modeling of Soil Moisture during Evaporation
000844844 260__ $$aMadison, Wis.$$bSSSA$$c2018
000844844 3367_ $$2DRIVER$$aarticle
000844844 3367_ $$2DataCite$$aOutput Types/Journal article
000844844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522823896_30936
000844844 3367_ $$2BibTeX$$aARTICLE
000844844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844844 3367_ $$00$$2EndNote$$aJournal Article
000844844 520__ $$aEvaporation from bare soil surfaces can be restrained to a great extent with the development of a dry layer at the soil surface where capillary hydraulic conductance ceases and water flow proceeds only by gas phase transport. Model calculations and preliminary experiments with model porous media have shown that this surface layer can be very thin. An accurate characterization of these processes is required, which is provided by noninvasive magnetic resonance (MR) methods. The evaporative drying of a silt loam and a sandy loam was monitored at high spatial resolution in laboratory experiments. The MR data were used to assess the performance of two numerical models: (i) the Richards equation, which considers isothermal liquid water flow, and (ii) a coupled soil water, heat, and vapor flow numerical model. The experimental results reveal two distinct drying regimes for both soil types where, at the onset of the second evaporation stage, a dry surface zone developed with increasing thickness over time. This layer revealed that water loss inside the soil coincided with a relatively low evaporation rate as the liquid continuity to the soil surface vanished. The modeling results clearly demonstrated the need to consider heat and vapor flow. It was shown, as a proof of principle, that MR relaxation time spectra may serve as a proxy to follow desaturation processes where spatially resolved transverse relaxation can reveal a secondary evaporation front.
000844844 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000844844 588__ $$aDataset connected to CrossRef
000844844 7001_ $$0P:(DE-HGF)0$$aBalcom, Bruce J.$$b1
000844844 7001_ $$0P:(DE-HGF)0$$aEnjilela, Razieh$$b2
000844844 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b3
000844844 7001_ $$0P:(DE-Juel1)145658$$aRothfuss, Youri$$b4
000844844 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5
000844844 7001_ $$0P:(DE-Juel1)129521$$aPohlmeier, Andreas$$b6
000844844 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2016.10.0099$$gVol. 17, no. 1, p. 0 -$$n1$$p $$tVadose zone journal$$v17$$x1539-1663$$y2018
000844844 8564_ $$uhttps://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.pdf$$yOpenAccess
000844844 8564_ $$uhttps://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.gif?subformat=icon$$xicon$$yOpenAccess
000844844 8564_ $$uhttps://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844844 8564_ $$uhttps://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844844 8564_ $$uhttps://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844844 8564_ $$uhttps://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844844 8767_ $$8643394$$92018-03-14$$d2018-03-21$$eAPC$$jZahlung erfolgt$$lKK: Barbers$$zUSD 1600,- MC Barbers Details per Fax, Verlag berechnet page charges, da Artikel noch vor 01. Nov. 2017 eingereicht wurde
000844844 909CO $$ooai:juser.fz-juelich.de:844844$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000844844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129503$$aForschungszentrum Jülich$$b0$$kFZJ
000844844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b3$$kFZJ
000844844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145658$$aForschungszentrum Jülich$$b4$$kFZJ
000844844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000844844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129521$$aForschungszentrum Jülich$$b6$$kFZJ
000844844 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000844844 9141_ $$y2018
000844844 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844844 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000844844 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2015
000844844 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844844 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844844 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844844 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844844 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000844844 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844844 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844844 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000844844 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000844844 9801_ $$aFullTexts
000844844 980__ $$ajournal
000844844 980__ $$aVDB
000844844 980__ $$aUNRESTRICTED
000844844 980__ $$aI:(DE-Juel1)IBG-3-20101118
000844844 980__ $$aI:(DE-Juel1)IEK-9-20110218
000844844 980__ $$aAPC
000844844 981__ $$aI:(DE-Juel1)IET-1-20110218