001     844844
005     20240712112828.0
024 7 _ |a 10.2136/vzj2016.10.0099
|2 doi
024 7 _ |a 2128/17945
|2 Handle
024 7 _ |a WOS:000439692900001
|2 WOS
037 _ _ |a FZJ-2018-02195
082 _ _ |a 550
100 1 _ |a Merz, Steffen
|0 P:(DE-Juel1)129503
|b 0
|e Corresponding author
245 _ _ |a Magnetic Resonance Monitoring and Numerical Modeling of Soil Moisture during Evaporation
260 _ _ |a Madison, Wis.
|c 2018
|b SSSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522823896_30936
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Evaporation from bare soil surfaces can be restrained to a great extent with the development of a dry layer at the soil surface where capillary hydraulic conductance ceases and water flow proceeds only by gas phase transport. Model calculations and preliminary experiments with model porous media have shown that this surface layer can be very thin. An accurate characterization of these processes is required, which is provided by noninvasive magnetic resonance (MR) methods. The evaporative drying of a silt loam and a sandy loam was monitored at high spatial resolution in laboratory experiments. The MR data were used to assess the performance of two numerical models: (i) the Richards equation, which considers isothermal liquid water flow, and (ii) a coupled soil water, heat, and vapor flow numerical model. The experimental results reveal two distinct drying regimes for both soil types where, at the onset of the second evaporation stage, a dry surface zone developed with increasing thickness over time. This layer revealed that water loss inside the soil coincided with a relatively low evaporation rate as the liquid continuity to the soil surface vanished. The modeling results clearly demonstrated the need to consider heat and vapor flow. It was shown, as a proof of principle, that MR relaxation time spectra may serve as a proxy to follow desaturation processes where spatially resolved transverse relaxation can reveal a secondary evaporation front.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Balcom, Bruce J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Enjilela, Razieh
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 3
700 1 _ |a Rothfuss, Youri
|0 P:(DE-Juel1)145658
|b 4
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 5
700 1 _ |a Pohlmeier, Andreas
|0 P:(DE-Juel1)129521
|b 6
773 _ _ |a 10.2136/vzj2016.10.0099
|g Vol. 17, no. 1, p. 0 -
|0 PERI:(DE-600)2088189-7
|n 1
|p
|t Vadose zone journal
|v 17
|y 2018
|x 1539-1663
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844844/files/vzj-17-1-160099.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844844
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129503
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129521
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21