000844848 001__ 844848
000844848 005__ 20210129233120.0
000844848 0247_ $$2doi$$a10.1007/s10827-018-0681-0
000844848 0247_ $$2pmid$$apmid:29589252
000844848 0247_ $$2WOS$$aWOS:000433484800003
000844848 0247_ $$2Handle$$a2128/20979
000844848 037__ $$aFZJ-2018-02199
000844848 082__ $$a610
000844848 1001_ $$0P:(DE-Juel1)167150$$aYeldesbay, Azamat$$b0$$eCorresponding author$$ufzj
000844848 245__ $$aThe role of phase shifts of sensory inputs in walking revealed by means of phase reduction -
000844848 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2018
000844848 3367_ $$2DRIVER$$aarticle
000844848 3367_ $$2DataCite$$aOutput Types/Journal article
000844848 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1529330071_32180
000844848 3367_ $$2BibTeX$$aARTICLE
000844848 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844848 3367_ $$00$$2EndNote$$aJournal Article
000844848 520__ $$aDetailed neural network models of animal locomotion are important means to understand the underlying mechanisms that control the coordinated movement of individual limbs. Daun-Gruhn and Tóth, Journal of Computational Neuroscience 31(2), 43–60 (2011) constructed an inter-segmental network model of stick insect locomotion consisting of three interconnected central pattern generators (CPGs) that are associated with the protraction-retraction movements of the front, middle and hind leg. This model could reproduce the basic locomotion coordination patterns, such as tri- and tetrapod, and the transitions between them. However, the analysis of such a system is a formidable task because of its large number of variables and parameters. In this study, we employed phase reduction and averaging theory to this large network model in order to reduce it to a system of coupled phase oscillators. This enabled us to analyze the complex behavior of the system in a reduced parameter space. In this paper, we show that the reduced model reproduces the results of the original model. By analyzing the interaction of just two coupled phase oscillators, we found that the neighboring CPGs could operate within distinct regimes, depending on the phase shift between the sensory inputs from the extremities and the phases of the individual CPGs. We demonstrate that this dependence is essential to produce different coordination patterns and the transition between them. Additionally, applying averaging theory to the system of all three phase oscillators, we calculate the stable fixed points - they correspond to stable tripod or tetrapod coordination patterns and identify two ways of transition between them.
000844848 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000844848 588__ $$aDataset connected to DataCite
000844848 7001_ $$0P:(DE-HGF)0$$aTóth, Tibor$$b1
000844848 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b2$$ufzj
000844848 773__ $$0PERI:(DE-600)1473055-8$$a10.1007/s10827-018-0681-0$$n3$$p313–339$$tJournal of computational neuroscience$$v44$$x0929-5313$$y2018
000844848 8564_ $$uhttps://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.pdf$$yRestricted
000844848 8564_ $$uhttps://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.gif?subformat=icon$$xicon$$yRestricted
000844848 8564_ $$uhttps://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844848 8564_ $$uhttps://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844848 8564_ $$uhttps://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844848 8564_ $$uhttps://juser.fz-juelich.de/record/844848/files/Yeldesbay_2018_Post%20Print_JCN_The%20role%20of%20phase%20shifts%20of%20sensory%20inputs%20in%20walking%20revealed%20by.pdf$$yPublished on 2018-03-27. Available in OpenAccess from 2019-03-27.
000844848 909CO $$ooai:juser.fz-juelich.de:844848$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000844848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167150$$aForschungszentrum Jülich$$b0$$kFZJ
000844848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b2$$kFZJ
000844848 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000844848 9141_ $$y2018
000844848 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844848 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000844848 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000844848 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COMPUT NEUROSCI : 2015
000844848 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844848 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844848 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844848 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844848 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844848 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844848 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844848 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844848 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844848 920__ $$lyes
000844848 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000844848 980__ $$ajournal
000844848 980__ $$aVDB
000844848 980__ $$aUNRESTRICTED
000844848 980__ $$aI:(DE-Juel1)INM-3-20090406
000844848 9801_ $$aFullTexts