001     844848
005     20210129233120.0
024 7 _ |a 10.1007/s10827-018-0681-0
|2 doi
024 7 _ |a pmid:29589252
|2 pmid
024 7 _ |a WOS:000433484800003
|2 WOS
024 7 _ |a 2128/20979
|2 Handle
037 _ _ |a FZJ-2018-02199
082 _ _ |a 610
100 1 _ |a Yeldesbay, Azamat
|0 P:(DE-Juel1)167150
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The role of phase shifts of sensory inputs in walking revealed by means of phase reduction -
260 _ _ |a Dordrecht [u.a.]
|c 2018
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529330071_32180
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Detailed neural network models of animal locomotion are important means to understand the underlying mechanisms that control the coordinated movement of individual limbs. Daun-Gruhn and Tóth, Journal of Computational Neuroscience 31(2), 43–60 (2011) constructed an inter-segmental network model of stick insect locomotion consisting of three interconnected central pattern generators (CPGs) that are associated with the protraction-retraction movements of the front, middle and hind leg. This model could reproduce the basic locomotion coordination patterns, such as tri- and tetrapod, and the transitions between them. However, the analysis of such a system is a formidable task because of its large number of variables and parameters. In this study, we employed phase reduction and averaging theory to this large network model in order to reduce it to a system of coupled phase oscillators. This enabled us to analyze the complex behavior of the system in a reduced parameter space. In this paper, we show that the reduced model reproduces the results of the original model. By analyzing the interaction of just two coupled phase oscillators, we found that the neighboring CPGs could operate within distinct regimes, depending on the phase shift between the sensory inputs from the extremities and the phases of the individual CPGs. We demonstrate that this dependence is essential to produce different coordination patterns and the transition between them. Additionally, applying averaging theory to the system of all three phase oscillators, we calculate the stable fixed points - they correspond to stable tripod or tetrapod coordination patterns and identify two ways of transition between them.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Tóth, Tibor
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Daun, Silvia
|0 P:(DE-Juel1)162297
|b 2
|u fzj
773 _ _ |a 10.1007/s10827-018-0681-0
|0 PERI:(DE-600)1473055-8
|n 3
|p 313–339
|t Journal of computational neuroscience
|v 44
|y 2018
|x 0929-5313
856 4 _ |u https://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/844848/files/Yeldesbay2018_Article_TheRoleOfPhaseShiftsOfSensoryI-1.jpg?subformat=icon-640
|y Restricted
856 4 _ |y Published on 2018-03-27. Available in OpenAccess from 2019-03-27.
|u https://juser.fz-juelich.de/record/844848/files/Yeldesbay_2018_Post%20Print_JCN_The%20role%20of%20phase%20shifts%20of%20sensory%20inputs%20in%20walking%20revealed%20by.pdf
909 C O |o oai:juser.fz-juelich.de:844848
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167150
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162297
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J COMPUT NEUROSCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21