000844850 001__ 844850
000844850 005__ 20210129233121.0
000844850 0247_ $$2doi$$a10.1103/PhysRevMaterials.2.024202
000844850 0247_ $$2Handle$$a2128/17946
000844850 0247_ $$2WOS$$aWOS:000425309700003
000844850 0247_ $$2altmetric$$aaltmetric:33294867
000844850 037__ $$aFZJ-2018-02201
000844850 082__ $$a530
000844850 1001_ $$0P:(DE-HGF)0$$aPlank, H.$$b0
000844850 245__ $$aInfrared/terahertz spectra of the photogalvanic effect in (Bi,Sb)Te based three-dimensional topological insulators
000844850 260__ $$aCollege Park, MD$$bAPS$$c2018
000844850 3367_ $$2DRIVER$$aarticle
000844850 3367_ $$2DataCite$$aOutput Types/Journal article
000844850 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522833470_30944
000844850 3367_ $$2BibTeX$$aARTICLE
000844850 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844850 3367_ $$00$$2EndNote$$aJournal Article
000844850 520__ $$aWe report on the systematic study of infrared/terahertz spectra of photocurrents in (Bi,Sb)Te based three-dimensional topological insulators. We demonstrate that in a wide range of frequencies, ranging from fractions up to tens of terahertz, the photocurrent is caused by the linear photogalvanic effect (LPGE) excited in the surface states. The photocurrent spectra reveal that at low frequencies the LPGE emerges due to free carrier Drude-like absorption. The spectra allow us to determine the room temperature carrier mobilities in the surface states despite the presence of thermally activated residual impurities in the material bulk. In a number of samples we observed an enhancement of the linear photogalvanic effect at frequencies between 30 and 60 THz, which is attributed to the excitation of electrons from helical surface to bulk conduction band states. Under this condition and applying oblique incidence we also observed the circular photogalvanic effect driven by the radiation helicity.
000844850 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000844850 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000844850 588__ $$aDataset connected to CrossRef
000844850 7001_ $$0P:(DE-HGF)0$$aPernul, J.$$b1
000844850 7001_ $$0P:(DE-HGF)0$$aGebert, S.$$b2
000844850 7001_ $$0P:(DE-HGF)0$$aDanilov, S. N.$$b3
000844850 7001_ $$0P:(DE-HGF)0$$aKönig-Otto, J.$$b4
000844850 7001_ $$0P:(DE-HGF)0$$aWinnerl, S.$$b5
000844850 7001_ $$0P:(DE-Juel1)156236$$aLanius, Martin$$b6
000844850 7001_ $$0P:(DE-Juel1)145467$$aKampmeier, Jörn$$b7
000844850 7001_ $$0P:(DE-Juel1)128617$$aMussler, G.$$b8$$ufzj
000844850 7001_ $$0P:(DE-Juel1)145750$$aAguilera, I.$$b9$$ufzj
000844850 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b10$$ufzj
000844850 7001_ $$0P:(DE-HGF)0$$aGanichev, S. D.$$b11$$eCorresponding author
000844850 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.2.024202$$gVol. 2, no. 2, p. 024202$$n2$$p024202$$tPhysical review materials$$v2$$x2475-9953$$y2018
000844850 8564_ $$uhttps://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.pdf$$yOpenAccess
000844850 8564_ $$uhttps://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.gif?subformat=icon$$xicon$$yOpenAccess
000844850 8564_ $$uhttps://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844850 8564_ $$uhttps://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844850 8564_ $$uhttps://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844850 8564_ $$uhttps://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844850 909CO $$ooai:juser.fz-juelich.de:844850$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000844850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b8$$kFZJ
000844850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145750$$aForschungszentrum Jülich$$b9$$kFZJ
000844850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b10$$kFZJ
000844850 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000844850 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000844850 9141_ $$y2018
000844850 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000844850 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844850 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000844850 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000844850 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000844850 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000844850 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x4
000844850 980__ $$ajournal
000844850 980__ $$aVDB
000844850 980__ $$aUNRESTRICTED
000844850 980__ $$aI:(DE-Juel1)IAS-1-20090406
000844850 980__ $$aI:(DE-Juel1)PGI-1-20110106
000844850 980__ $$aI:(DE-82)080009_20140620
000844850 980__ $$aI:(DE-82)080012_20140620
000844850 980__ $$aI:(DE-Juel1)PGI-9-20110106
000844850 9801_ $$aFullTexts