001     844850
005     20210129233121.0
024 7 _ |a 10.1103/PhysRevMaterials.2.024202
|2 doi
024 7 _ |a 2128/17946
|2 Handle
024 7 _ |a WOS:000425309700003
|2 WOS
024 7 _ |a altmetric:33294867
|2 altmetric
037 _ _ |a FZJ-2018-02201
082 _ _ |a 530
100 1 _ |a Plank, H.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Infrared/terahertz spectra of the photogalvanic effect in (Bi,Sb)Te based three-dimensional topological insulators
260 _ _ |a College Park, MD
|c 2018
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522833470_30944
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on the systematic study of infrared/terahertz spectra of photocurrents in (Bi,Sb)Te based three-dimensional topological insulators. We demonstrate that in a wide range of frequencies, ranging from fractions up to tens of terahertz, the photocurrent is caused by the linear photogalvanic effect (LPGE) excited in the surface states. The photocurrent spectra reveal that at low frequencies the LPGE emerges due to free carrier Drude-like absorption. The spectra allow us to determine the room temperature carrier mobilities in the surface states despite the presence of thermally activated residual impurities in the material bulk. In a number of samples we observed an enhancement of the linear photogalvanic effect at frequencies between 30 and 60 THz, which is attributed to the excitation of electrons from helical surface to bulk conduction band states. Under this condition and applying oblique incidence we also observed the circular photogalvanic effect driven by the radiation helicity.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pernul, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gebert, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Danilov, S. N.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a König-Otto, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Winnerl, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lanius, Martin
|0 P:(DE-Juel1)156236
|b 6
700 1 _ |a Kampmeier, Jörn
|0 P:(DE-Juel1)145467
|b 7
700 1 _ |a Mussler, G.
|0 P:(DE-Juel1)128617
|b 8
|u fzj
700 1 _ |a Aguilera, I.
|0 P:(DE-Juel1)145750
|b 9
|u fzj
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 10
|u fzj
700 1 _ |a Ganichev, S. D.
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1103/PhysRevMaterials.2.024202
|g Vol. 2, no. 2, p. 024202
|0 PERI:(DE-600)2898355-5
|n 2
|p 024202
|t Physical review materials
|v 2
|y 2018
|x 2475-9953
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844850/files/PhysRevMaterials.2.024202.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844850
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)145750
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21