000844852 001__ 844852
000844852 005__ 20240711092249.0
000844852 0247_ $$2doi$$a10.1007/s40831-017-0144-2
000844852 0247_ $$2ISSN$$a2199-3823
000844852 0247_ $$2ISSN$$a2199-3831
000844852 0247_ $$2WOS$$aWOS:000427608800002
000844852 037__ $$aFZJ-2018-02203
000844852 082__ $$a540
000844852 1001_ $$0P:(DE-Juel1)171476$$aMüller, M.$$b0$$eCorresponding author
000844852 245__ $$aExperimental Investigation and Modeling of the Viscosity of Oxide Slag Systems
000844852 260__ $$aBerlin$$bSpringer$$c2018
000844852 3367_ $$2DRIVER$$aarticle
000844852 3367_ $$2DataCite$$aOutput Types/Journal article
000844852 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522834725_30940
000844852 3367_ $$2BibTeX$$aARTICLE
000844852 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844852 3367_ $$00$$2EndNote$$aJournal Article
000844852 520__ $$aNumerous technical applications in the energy and metallurgical industries demand a fundamental knowledge of the flow of slags. Besides temperature and composition, which determine the internal structure of an oxide melt, crystallization in the slag significantly influences its flow behavior. Therefore, not only the temperature-dependent viscosity of fully liquid oxide melts was determined using a rotational high-temperature viscometer but also isothermal viscosity measurements were conducted, in order to examine the rheological evolution over time caused by crystallization. The crystallization behavior during flow can be separated into three time regimes: a lag-time, in which the undercooled melt behaves as an Arrhenius liquid; the kinetic-driven crystallization; and, finally, the rheological equilibrium that is represented by a time-invariant viscosity plateau. To model the viscosity of oxide slags, in a first step, a self-consistent thermodynamic database for the system SiO2–Al2O3–CaO–MgO–FeO x –K2O–Na2O–P2O5–SO x has been established. The Gibbs energy of the liquid phase has been modeled using a non-ideal associate solution description. In a second step, an Arrhenius-type model for the calculation of viscosities of fully molten slags has been developed. The model is based on the same structural units, i.e., the associates, as the one for the Gibbs energy of the melt. In a third step, the influence of crystallization, which not only transforms the liquid into dispersion but also usually changes the composition of the residual liquid, on the viscosity is considered.
000844852 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000844852 588__ $$aDataset connected to CrossRef
000844852 7001_ $$0P:(DE-Juel1)161590$$aSeebold, S.$$b1
000844852 7001_ $$0P:(DE-Juel1)145147$$aWu, G.$$b2
000844852 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, E.$$b3
000844852 7001_ $$0P:(DE-HGF)0$$aJantzen, T.$$b4
000844852 7001_ $$0P:(DE-HGF)0$$aHack, K.$$b5
000844852 773__ $$0PERI:(DE-600)2808817-7$$a10.1007/s40831-017-0144-2$$gVol. 4, no. 1, p. 3 - 14$$n1$$p3 - 14$$tJournal of sustainable metallurgy$$v4$$x2199-3831$$y2018
000844852 8564_ $$uhttps://juser.fz-juelich.de/record/844852/files/10.1007_s40831-017-0144-2.pdf$$yRestricted
000844852 8564_ $$uhttps://juser.fz-juelich.de/record/844852/files/10.1007_s40831-017-0144-2.gif?subformat=icon$$xicon$$yRestricted
000844852 8564_ $$uhttps://juser.fz-juelich.de/record/844852/files/10.1007_s40831-017-0144-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844852 8564_ $$uhttps://juser.fz-juelich.de/record/844852/files/10.1007_s40831-017-0144-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844852 8564_ $$uhttps://juser.fz-juelich.de/record/844852/files/10.1007_s40831-017-0144-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844852 8564_ $$uhttps://juser.fz-juelich.de/record/844852/files/10.1007_s40831-017-0144-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844852 909CO $$ooai:juser.fz-juelich.de:844852$$pVDB
000844852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171476$$aForschungszentrum Jülich$$b0$$kFZJ
000844852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161590$$aForschungszentrum Jülich$$b1$$kFZJ
000844852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145147$$aForschungszentrum Jülich$$b2$$kFZJ
000844852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b3$$kFZJ
000844852 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000844852 9141_ $$y2018
000844852 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000844852 980__ $$ajournal
000844852 980__ $$aVDB
000844852 980__ $$aI:(DE-Juel1)IEK-2-20101013
000844852 980__ $$aUNRESTRICTED
000844852 981__ $$aI:(DE-Juel1)IMD-1-20101013