000844855 001__ 844855
000844855 005__ 20240712100853.0
000844855 0247_ $$2doi$$a10.5194/angeo-36-425-2018
000844855 0247_ $$2ISSN$$a0992-7689
000844855 0247_ $$2ISSN$$a1432-0576
000844855 0247_ $$2Handle$$a2128/19875
000844855 0247_ $$2WOS$$aWOS:000427749900001
000844855 0247_ $$2altmetric$$aaltmetric:34518450
000844855 037__ $$aFZJ-2018-02206
000844855 041__ $$aEnglish
000844855 082__ $$a550
000844855 1001_ $$0P:(DE-Juel1)151304$$aTrinh, Quang Thai$$b0$$eCorresponding author
000844855 245__ $$aSatellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves
000844855 260__ $$aKatlenburg, Lindau$$bCopernicus$$c2018
000844855 3367_ $$2DRIVER$$aarticle
000844855 3367_ $$2DataCite$$aOutput Types/Journal article
000844855 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540448386_26205
000844855 3367_ $$2BibTeX$$aARTICLE
000844855 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844855 3367_ $$00$$2EndNote$$aJournal Article
000844855 520__ $$aAtmospheric  gravity  waves  (GWs)  are  essentialfor  the  dynamics  of  the  middle  atmosphere.  Recent  stud-ies have shown that these waves are also important for thethermosphere/ionosphere (T/I) system. Via vertical coupling,GWs  can  significantly  influence  the  mean  state  of  the  T/Isystem. However, the penetration of GWs into the T/I sys-tem  is  not  fully  understood  in  modeling  as  well  as  obser-vations. In the current study, we analyze the correlation be-tween GW momentum fluxes observed in the middle atmo-sphere (30–90 km) and GW-induced perturbations in the T/I.In the middle atmosphere, GW momentum fluxes are derivedfrom  temperature  observations  of  the  Sounding  of  the  At-mosphere using Broadband Emission Radiometry (SABER)satellite instrument. In the T/I, GW-induced perturbations arederived from neutral density measured by instruments on theGravity field and Ocean Circulation Explorer (GOCE) andCHAllenging Minisatellite Payload (CHAMP) satellites. Wefind generally positive correlations between horizontal dis-tributions at low altitudes (i.e., below 90 km) and horizontaldistributions of GW-induced density fluctuations in the T/I(at 200 km and above). Two coupling mechanisms are likelyresponsible for these positive correlations: (1) fast GWs gen-erated in the troposphere and lower stratosphere can propa-gate directly to the T/I and (2) primary GWs with their ori-gins in the lower atmosphere dissipate while propagating up-wards  and  generate  secondary  GWs,  which  then  penetrateup to the T/I and maintain the spatial patterns of GW dis-tributions in the lower atmosphere. The mountain-wave re-lated hotspot over the Andes and Antarctic Peninsula is foundclearly in observations of all instruments used in our analy-sis. Latitude–longitude variations in the summer midlatitudesare also found in observations of all instruments. These vari-ations and strong positive correlations in the summer midlat-itudes suggest that GWs with origins related to convectionalso propagate up to the T/I. Different processes which likelyinfluence the vertical coupling are GW dissipation, possiblegeneration of secondary GWs, and horizontal propagation ofGWs. Limitations of the observations as well as of our re-search approach are discussed.
000844855 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000844855 588__ $$aDataset connected to CrossRef
000844855 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b1
000844855 7001_ $$00000-0002-9790-8546$$aDoornbos, Eelco$$b2
000844855 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b3$$ufzj
000844855 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b4$$ufzj
000844855 773__ $$0PERI:(DE-600)1458425-6$$a10.5194/angeo-36-425-2018$$gVol. 36, no. 2, p. 425 - 444$$n2$$p425 - 444$$tAnnales geophysicae$$v36$$x1432-0576$$y2018
000844855 8564_ $$uhttps://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.pdf
000844855 8564_ $$uhttps://juser.fz-juelich.de/record/844855/files/angeo-36-425-2018.pdf$$yOpenAccess
000844855 8564_ $$uhttps://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.gif?subformat=icon$$xicon
000844855 8564_ $$uhttps://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-1440$$xicon-1440
000844855 8564_ $$uhttps://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-180$$xicon-180
000844855 8564_ $$uhttps://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-640$$xicon-640
000844855 8564_ $$uhttps://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.pdf?subformat=pdfa$$xpdfa
000844855 8564_ $$uhttps://juser.fz-juelich.de/record/844855/files/angeo-36-425-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844855 8767_ $$8Helmholtz-PUC-2018-12$$92018-04-04$$d2018-04-04$$eAPC$$jZahlung erfolgt$$pangeo-2017-178
000844855 909CO $$ooai:juser.fz-juelich.de:844855$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000844855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151304$$aForschungszentrum Jülich$$b0$$kFZJ
000844855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b1$$kFZJ
000844855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b3$$kFZJ
000844855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b4$$kFZJ
000844855 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000844855 9141_ $$y2018
000844855 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844855 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844855 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844855 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN GEOPHYS-GERMANY : 2015
000844855 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000844855 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000844855 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844855 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844855 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844855 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844855 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844855 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844855 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844855 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844855 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000844855 9801_ $$aAPC
000844855 9801_ $$aFullTexts
000844855 980__ $$ajournal
000844855 980__ $$aVDB
000844855 980__ $$aUNRESTRICTED
000844855 980__ $$aI:(DE-Juel1)IEK-7-20101013
000844855 980__ $$aAPC
000844855 981__ $$aI:(DE-Juel1)ICE-4-20101013