Hauptseite > Workflowsammlungen > Publikationsgebühren > Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves > print |
001 | 844855 | ||
005 | 20240712100853.0 | ||
024 | 7 | _ | |a 10.5194/angeo-36-425-2018 |2 doi |
024 | 7 | _ | |a 0992-7689 |2 ISSN |
024 | 7 | _ | |a 1432-0576 |2 ISSN |
024 | 7 | _ | |a 2128/19875 |2 Handle |
024 | 7 | _ | |a WOS:000427749900001 |2 WOS |
024 | 7 | _ | |a altmetric:34518450 |2 altmetric |
037 | _ | _ | |a FZJ-2018-02206 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Trinh, Quang Thai |0 P:(DE-Juel1)151304 |b 0 |e Corresponding author |
245 | _ | _ | |a Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves |
260 | _ | _ | |a Katlenburg, Lindau |c 2018 |b Copernicus |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1540448386_26205 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Atmospheric gravity waves (GWs) are essentialfor the dynamics of the middle atmosphere. Recent stud-ies have shown that these waves are also important for thethermosphere/ionosphere (T/I) system. Via vertical coupling,GWs can significantly influence the mean state of the T/Isystem. However, the penetration of GWs into the T/I sys-tem is not fully understood in modeling as well as obser-vations. In the current study, we analyze the correlation be-tween GW momentum fluxes observed in the middle atmo-sphere (30–90 km) and GW-induced perturbations in the T/I.In the middle atmosphere, GW momentum fluxes are derivedfrom temperature observations of the Sounding of the At-mosphere using Broadband Emission Radiometry (SABER)satellite instrument. In the T/I, GW-induced perturbations arederived from neutral density measured by instruments on theGravity field and Ocean Circulation Explorer (GOCE) andCHAllenging Minisatellite Payload (CHAMP) satellites. Wefind generally positive correlations between horizontal dis-tributions at low altitudes (i.e., below 90 km) and horizontaldistributions of GW-induced density fluctuations in the T/I(at 200 km and above). Two coupling mechanisms are likelyresponsible for these positive correlations: (1) fast GWs gen-erated in the troposphere and lower stratosphere can propa-gate directly to the T/I and (2) primary GWs with their ori-gins in the lower atmosphere dissipate while propagating up-wards and generate secondary GWs, which then penetrateup to the T/I and maintain the spatial patterns of GW dis-tributions in the lower atmosphere. The mountain-wave re-lated hotspot over the Andes and Antarctic Peninsula is foundclearly in observations of all instruments used in our analy-sis. Latitude–longitude variations in the summer midlatitudesare also found in observations of all instruments. These vari-ations and strong positive correlations in the summer midlat-itudes suggest that GWs with origins related to convectionalso propagate up to the T/I. Different processes which likelyinfluence the vertical coupling are GW dissipation, possiblegeneration of secondary GWs, and horizontal propagation ofGWs. Limitations of the observations as well as of our re-search approach are discussed. |
536 | _ | _ | |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) |0 G:(DE-HGF)POF3-244 |c POF3-244 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Ern, Manfred |0 P:(DE-Juel1)129117 |b 1 |
700 | 1 | _ | |a Doornbos, Eelco |0 0000-0002-9790-8546 |b 2 |
700 | 1 | _ | |a Preusse, Peter |0 P:(DE-Juel1)129143 |b 3 |u fzj |
700 | 1 | _ | |a Riese, Martin |0 P:(DE-Juel1)129145 |b 4 |u fzj |
773 | _ | _ | |a 10.5194/angeo-36-425-2018 |g Vol. 36, no. 2, p. 425 - 444 |0 PERI:(DE-600)1458425-6 |n 2 |p 425 - 444 |t Annales geophysicae |v 36 |y 2018 |x 1432-0576 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/844855/files/angeo-36-425-2018.pdf |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.gif?subformat=icon |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-1440 |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-180 |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-640 |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/844855/files/invoice_Helmholtz-PUC-2018-12.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/844855/files/angeo-36-425-2018.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:844855 |p openaire |p open_access |p OpenAPC |p driver |p VDB:Earth_Environment |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)151304 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129117 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129143 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129145 |
913 | 1 | _ | |a DE-HGF |l Atmosphäre und Klima |1 G:(DE-HGF)POF3-240 |0 G:(DE-HGF)POF3-244 |2 G:(DE-HGF)POF3-200 |v Composition and dynamics of the upper troposphere and middle atmosphere |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANN GEOPHYS-GERMANY : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|