001     844862
005     20240712101021.0
024 7 _ |a 10.5194/acp-18-3147-2018
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/20056
|2 Handle
024 7 _ |a WOS:000426721800001
|2 WOS
024 7 _ |a altmetric:33951638
|2 altmetric
037 _ _ |a FZJ-2018-02213
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Stadtler, Scarlet
|0 P:(DE-Juel1)164575
|b 0
|e Corresponding author
245 _ _ |a Ozone impacts of gas–aerosol uptake in global chemistry transport models
260 _ _ |a Katlenburg-Lindau
|c 2018
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552644540_21968
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a enthält Publikationsgebühren
520 _ _ |a The impact of six heterogeneous gas–aerosol up-take reactions on tropospheric ozone and nitrogen specieswas studied using two chemical transport models, the Mete-orological Synthesizing Centre-West of the European Moni-toring and Evaluation Programme (EMEP MSC-W) and theEuropean Centre Hamburg general circulation model com-bined with versions of the Hamburg Aerosol Model andModel for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions inboth models include N2O5, NO3, NO2, O3, HNO3, and HO2.Since heterogeneous reactions take place at the aerosol sur-face area, the modelled surface area density (Sa) of both mod-els was compared to a satellite product retrieving the surfacearea. This comparison shows a good agreement in global pat-tern and especially the capability of both models to capturethe extreme aerosol loadings in east Asia.The impact of the heterogeneous reactions was evaluatedby the simulation of a reference run containing all hetero-geneous reactions and several sensitivity runs. One reactionwas turned off in each sensitivity run to compare it withthe reference run. The analysis of the sensitivity runs con-firms that the globally most important heterogeneous reac-tion is the one of N2O5. Nevertheless, NO2, HNO3, andHO2heterogeneous reactions gain relevance particularly ineast Asia due to the presence of high NOxconcentrationsand highSain the same region. The heterogeneous reactionof O3itself on dust is of minor relevance compared to theother heterogeneous reactions. The impacts of the N2O5re-actions show strong seasonal variations, with the biggest im-pacts on O3in springtime when photochemical reactions areactive and N2O5levels still high. Evaluation of the modelswith northern hemispheric ozone surface observations yieldsa better agreement of the models with observations in termsof concentration levels, variability, and temporal correlationsat most sites when the heterogeneous reactions are incorpo-rated. Our results are loosely consistent with results from ear-lier studies, although the magnitude of changes induced byN2O5reaction is at the low end of estimates, which seems tofit a trend, whereby the more recent the study the lower theimpacts of these reactions
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
536 _ _ |a Chemical processes in the troposphere and their impact on climate (jicg23_20151101)
|0 G:(DE-Juel1)jicg23_20151101
|c jicg23_20151101
|f Chemical processes in the troposphere and their impact on climate
|x 1
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Simpson, David
|0 0000-0001-9538-3208
|b 1
|e Corresponding author
700 1 _ |a Schröder, Sabine
|0 P:(DE-Juel1)16212
|b 2
700 1 _ |a Taraborrelli, Domenico
|0 P:(DE-Juel1)167439
|b 3
700 1 _ |a Bott, Andreas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 5
773 _ _ |a 10.5194/acp-18-3147-2018
|g Vol. 18, no. 5, p. 3147 - 3171
|0 PERI:(DE-600)2069847-1
|n 5
|p 3147 - 3171
|t Atmospheric chemistry and physics
|v 18
|y 2018
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.pdf
856 4 _ |u https://juser.fz-juelich.de/record/844862/files/acp-18-3147-2018.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/844862/files/acp-18-3147-2018.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:844862
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164575
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)16212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167439
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21