000844876 001__ 844876
000844876 005__ 20240711092250.0
000844876 0247_ $$2doi$$a10.1016/j.nme.2017.03.003
000844876 0247_ $$2Handle$$a2128/17952
000844876 0247_ $$2WOS$$aWOS:000417293300061
000844876 037__ $$aFZJ-2018-02222
000844876 082__ $$a333.7
000844876 1001_ $$0P:(DE-HGF)0$$aSinclair, G.$$b0$$eCorresponding author
000844876 245__ $$aStructural evolution of tungsten surface exposed to sequential low-energy helium ion irradiation and transient heat loading
000844876 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000844876 3367_ $$2DRIVER$$aarticle
000844876 3367_ $$2DataCite$$aOutput Types/Journal article
000844876 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523207513_27705
000844876 3367_ $$2BibTeX$$aARTICLE
000844876 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844876 3367_ $$00$$2EndNote$$aJournal Article
000844876 520__ $$aStructural damage due to high flux particle irradiation can result in significant changes to the thermal strength of the plasma facing component surface (PFC) during off-normal events in a tokamak. Low-energy He+ ion irradiation of tungsten (W), which is currently the leading candidate material for future PFCs, can result in the development of a fiber form nanostructure, known as “fuzz”. In the current study, mirror-finished W foils were exposed to 100 eV He+ ion irradiation at a fluence of 2.6 × 1024 ions m−2 and a temperature of 1200 K. Then, samples were exposed to two different types of pulsed heat loading meant to replicate type-I edge-localized mode (ELM) heating at varying energy densities and base temperatures. Millisecond (ms) laser exposure done at 1200 K revealed a reduction in fuzz density with increasing energy density due to the conglomeration and local melting of W fibers. At higher energy densities (∼ 1.5 MJ m−2), RT exposures resulted in surface cracking, while 1200 K exposures resulted in surface roughening, demonstrating the role of base temperature on the crack formation in W. Electron beam heating presented similar trends in surface morphology evolution; a higher penetration depth led to reduced melt motion and plasticity. In situ mass loss measurements obtained via a quartz crystal microbalance (QCM) found an exponential increase in particle emission for RT exposures, while the prevalence of melting from 1200 K exposures yielded no observable trend.
000844876 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000844876 588__ $$aDataset connected to CrossRef
000844876 7001_ $$0P:(DE-HGF)0$$aTripathi, J. K.$$b1
000844876 7001_ $$0P:(DE-HGF)0$$aDiwakar, P. K.$$b2
000844876 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b3$$ufzj
000844876 7001_ $$0P:(DE-HGF)0$$aHassanein, A.$$b4
000844876 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b5
000844876 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2017.03.003$$gVol. 12, p. 405 - 411$$p405 - 411$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000844876 8564_ $$uhttps://juser.fz-juelich.de/record/844876/files/1-s2.0-S235217911630120X-main.pdf$$yOpenAccess
000844876 8564_ $$uhttps://juser.fz-juelich.de/record/844876/files/1-s2.0-S235217911630120X-main.gif?subformat=icon$$xicon$$yOpenAccess
000844876 8564_ $$uhttps://juser.fz-juelich.de/record/844876/files/1-s2.0-S235217911630120X-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844876 8564_ $$uhttps://juser.fz-juelich.de/record/844876/files/1-s2.0-S235217911630120X-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844876 8564_ $$uhttps://juser.fz-juelich.de/record/844876/files/1-s2.0-S235217911630120X-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844876 8564_ $$uhttps://juser.fz-juelich.de/record/844876/files/1-s2.0-S235217911630120X-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844876 909CO $$ooai:juser.fz-juelich.de:844876$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000844876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b3$$kFZJ
000844876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b5$$kFZJ
000844876 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000844876 9141_ $$y2018
000844876 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844876 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000844876 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000844876 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000844876 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844876 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000844876 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844876 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844876 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000844876 9801_ $$aFullTexts
000844876 980__ $$ajournal
000844876 980__ $$aVDB
000844876 980__ $$aUNRESTRICTED
000844876 980__ $$aI:(DE-Juel1)IEK-2-20101013
000844876 981__ $$aI:(DE-Juel1)IMD-1-20101013