000844877 001__ 844877
000844877 005__ 20240711113555.0
000844877 0247_ $$2doi$$a10.1016/j.jmatprotec.2017.09.024
000844877 0247_ $$2ISSN$$a0924-0136
000844877 0247_ $$2ISSN$$a1873-4774
000844877 0247_ $$2WOS$$aWOS:000417659800022
000844877 037__ $$aFZJ-2018-02223
000844877 041__ $$aEnglish
000844877 082__ $$a670
000844877 1001_ $$0P:(DE-Juel1)169609$$ade Prado, J.$$b0$$eCorresponding author
000844877 245__ $$aImpact of thermal fatigue on W–W brazed joints for divertor components
000844877 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000844877 3367_ $$2DRIVER$$aarticle
000844877 3367_ $$2DataCite$$aOutput Types/Journal article
000844877 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523262288_15728
000844877 3367_ $$2BibTeX$$aARTICLE
000844877 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844877 3367_ $$00$$2EndNote$$aJournal Article
000844877 520__ $$aW–W brazed joints (tungsten block: 8 × 8 × 4 mm joined to an actively cooled copper heat sink) were exposed to steady state heat loads to study the effect of the thermal fatigue on their microstructure, mechanical integrity and heat transfer capability. Two different surface temperatures were tested (1000 °C and 1250 °C) varying the number of applied cycles (100 and 1000). The results indicated that a surface temperature of 1000 °C represents the limit condition for the joints to be used in the DEMO fusion reactor, which corresponds to a braze temperature in the range of 562–599 °C according to thermal simulation results. The use of that temperature caused a limited effect on the microstructure and heat transfer capability for both 100 and 1000 applied cycles. The increase of the surface temperature to 1250 °C caused degradation of the joint and a reduction of sustained cycles and accordingly lifetime.
000844877 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000844877 588__ $$aDataset connected to CrossRef
000844877 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-140002$$aSánchez, M.$$b1
000844877 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b2
000844877 7001_ $$0P:(DE-Juel1)144673$$aDu, J.$$b3
000844877 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b4
000844877 7001_ $$0P:(DE-HGF)0$$aUreña, A.$$b5
000844877 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b6$$eCorresponding author
000844877 773__ $$0PERI:(DE-600)2012658-X$$a10.1016/j.jmatprotec.2017.09.024$$gVol. 252, p. 211 - 216$$p211 - 216$$tJournal of materials processing technology$$v252$$x0924-0136$$y2018
000844877 8564_ $$uhttps://juser.fz-juelich.de/record/844877/files/1-s2.0-S0924013617304235-main.pdf$$yRestricted
000844877 8564_ $$uhttps://juser.fz-juelich.de/record/844877/files/1-s2.0-S0924013617304235-main.gif?subformat=icon$$xicon$$yRestricted
000844877 8564_ $$uhttps://juser.fz-juelich.de/record/844877/files/1-s2.0-S0924013617304235-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844877 8564_ $$uhttps://juser.fz-juelich.de/record/844877/files/1-s2.0-S0924013617304235-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844877 8564_ $$uhttps://juser.fz-juelich.de/record/844877/files/1-s2.0-S0924013617304235-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844877 8564_ $$uhttps://juser.fz-juelich.de/record/844877/files/1-s2.0-S0924013617304235-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844877 909CO $$ooai:juser.fz-juelich.de:844877$$pVDB
000844877 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)IHRS-BioSoft-140002$$aExternal Institute$$b1$$kExtern
000844877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b2$$kFZJ
000844877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144673$$aForschungszentrum Jülich$$b3$$kFZJ
000844877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b4$$kFZJ
000844877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b6$$kFZJ
000844877 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000844877 9141_ $$y2018
000844877 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER PROCESS TECH : 2015
000844877 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844877 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844877 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844877 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844877 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844877 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844877 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000844877 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844877 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000844877 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000844877 980__ $$ajournal
000844877 980__ $$aVDB
000844877 980__ $$aI:(DE-Juel1)IEK-2-20101013
000844877 980__ $$aI:(DE-Juel1)IEK-4-20101013
000844877 980__ $$aUNRESTRICTED
000844877 981__ $$aI:(DE-Juel1)IMD-1-20101013
000844877 981__ $$aI:(DE-Juel1)IFN-1-20101013