000844884 001__ 844884
000844884 005__ 20210129233131.0
000844884 0247_ $$2doi$$a10.1016/j.neuroscience.2017.12.052
000844884 0247_ $$2ISSN$$a0306-4522
000844884 0247_ $$2ISSN$$a1873-7544
000844884 0247_ $$2pmid$$apmid:29317262
000844884 0247_ $$2WOS$$aWOS:000425878100017
000844884 037__ $$aFZJ-2018-02230
000844884 041__ $$aEnglish
000844884 082__ $$a610
000844884 1001_ $$0P:(DE-HGF)0$$aKugler, Eva Maria$$b0
000844884 245__ $$aSensitivity to Strain and Shear Stress of Isolated Mechanosensitive Enteric Neurons
000844884 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000844884 3367_ $$2DRIVER$$aarticle
000844884 3367_ $$2DataCite$$aOutput Types/Journal article
000844884 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523208235_27708
000844884 3367_ $$2BibTeX$$aARTICLE
000844884 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844884 3367_ $$00$$2EndNote$$aJournal Article
000844884 520__ $$aWithin the enteric nervous system, the neurons in charge to control motility of the gastrointestinal tract reside in a particular location nestled between two perpendicular muscle layers which contract and relax. We used primary cultured myenteric neurons of male guinea pigs to study mechanosensitivity of enteric neurons in isolation. Ultrafast Neuroimaging with a voltage-sensitive dye technique was used to record neuronal activity in response to shear stress and strain. Strain was induced by locally deforming the elastic cell culture substrate next to a neuron. Measurements showed that substrate strain was mostly elongating cells. Shear stress was exerted by hydrodynamic forces in a microchannel. Both stimuli induced excitatory responses. Strain activated 14% of the stimulated myenteric neurons that responded with a spike frequency of 1.9 (0.7/3.2) Hz, whereas shear stress excited only a few neurons (5.6%) with a very low spike frequency of 0 (0/0.6) Hz. Thus, shear stress does not seem to be an adequate stimulus for mechanosensitive enteric neurons (MEN) while strain activates enteric neurons in a relevant manner. Analyzing the adaptation behavior of MEN showed that shear stress activated rapidly/slowly/ultraslowly adapting MEN (2/62/36%) whereas strain only slowly (46%) and ultraslowly (54%) MEN. Paired experiments with strain and normal stress revealed three mechanosensitive enteric neuronal populations: one strain-sensitive (37%), one normal stress-sensitive (17%) and one strain- and stress-sensitive (46%).These results indicate that shear stress does not play a role in the neuronal control of motility but normal stress and strain.
000844884 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000844884 588__ $$aDataset connected to CrossRef
000844884 7001_ $$0P:(DE-HGF)0$$aMichel, Klaus$$b1
000844884 7001_ $$0P:(DE-HGF)0$$aKirchenbüchler, David$$b2
000844884 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b3
000844884 7001_ $$0P:(DE-Juel1)128805$$aCsiszár, Agnes$$b4
000844884 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b5
000844884 7001_ $$0P:(DE-HGF)0$$aSchemann, Michael$$b6
000844884 7001_ $$0P:(DE-HGF)0$$aMazzuoli-Weber, Gemma$$b7$$eCorresponding author
000844884 773__ $$0PERI:(DE-600)1498423-4$$a10.1016/j.neuroscience.2017.12.052$$gVol. 372, p. 213 - 224$$p213 - 224$$tNeuroscience$$v372$$x0306-4522$$y2018
000844884 8564_ $$uhttps://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.pdf$$yRestricted
000844884 8564_ $$uhttps://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.gif?subformat=icon$$xicon$$yRestricted
000844884 8564_ $$uhttps://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844884 8564_ $$uhttps://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844884 8564_ $$uhttps://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844884 8564_ $$uhttps://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844884 909CO $$ooai:juser.fz-juelich.de:844884$$pVDB
000844884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000844884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b3$$kFZJ
000844884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128805$$aForschungszentrum Jülich$$b4$$kFZJ
000844884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b5$$kFZJ
000844884 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000844884 9141_ $$y2018
000844884 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844884 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844884 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844884 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROSCIENCE : 2015
000844884 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844884 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844884 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844884 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844884 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844884 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844884 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844884 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000844884 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844884 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844884 920__ $$lyes
000844884 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000844884 980__ $$ajournal
000844884 980__ $$aVDB
000844884 980__ $$aI:(DE-Juel1)ICS-7-20110106
000844884 980__ $$aUNRESTRICTED
000844884 981__ $$aI:(DE-Juel1)IBI-2-20200312