001     844884
005     20210129233131.0
024 7 _ |a 10.1016/j.neuroscience.2017.12.052
|2 doi
024 7 _ |a 0306-4522
|2 ISSN
024 7 _ |a 1873-7544
|2 ISSN
024 7 _ |a pmid:29317262
|2 pmid
024 7 _ |a WOS:000425878100017
|2 WOS
037 _ _ |a FZJ-2018-02230
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kugler, Eva Maria
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Sensitivity to Strain and Shear Stress of Isolated Mechanosensitive Enteric Neurons
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1523208235_27708
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Within the enteric nervous system, the neurons in charge to control motility of the gastrointestinal tract reside in a particular location nestled between two perpendicular muscle layers which contract and relax. We used primary cultured myenteric neurons of male guinea pigs to study mechanosensitivity of enteric neurons in isolation. Ultrafast Neuroimaging with a voltage-sensitive dye technique was used to record neuronal activity in response to shear stress and strain. Strain was induced by locally deforming the elastic cell culture substrate next to a neuron. Measurements showed that substrate strain was mostly elongating cells. Shear stress was exerted by hydrodynamic forces in a microchannel. Both stimuli induced excitatory responses. Strain activated 14% of the stimulated myenteric neurons that responded with a spike frequency of 1.9 (0.7/3.2) Hz, whereas shear stress excited only a few neurons (5.6%) with a very low spike frequency of 0 (0/0.6) Hz. Thus, shear stress does not seem to be an adequate stimulus for mechanosensitive enteric neurons (MEN) while strain activates enteric neurons in a relevant manner. Analyzing the adaptation behavior of MEN showed that shear stress activated rapidly/slowly/ultraslowly adapting MEN (2/62/36%) whereas strain only slowly (46%) and ultraslowly (54%) MEN. Paired experiments with strain and normal stress revealed three mechanosensitive enteric neuronal populations: one strain-sensitive (37%), one normal stress-sensitive (17%) and one strain- and stress-sensitive (46%).These results indicate that shear stress does not play a role in the neuronal control of motility but normal stress and strain.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Michel, Klaus
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kirchenbüchler, David
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dreissen, Georg
|0 P:(DE-Juel1)129308
|b 3
700 1 _ |a Csiszár, Agnes
|0 P:(DE-Juel1)128805
|b 4
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 5
700 1 _ |a Schemann, Michael
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mazzuoli-Weber, Gemma
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.neuroscience.2017.12.052
|g Vol. 372, p. 213 - 224
|0 PERI:(DE-600)1498423-4
|p 213 - 224
|t Neuroscience
|v 372
|y 2018
|x 0306-4522
856 4 _ |u https://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844884/files/1-s2.0-S0306452218300022-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844884
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128833
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROSCIENCE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21