000844894 001__ 844894
000844894 005__ 20240610121209.0
000844894 0247_ $$2doi$$a10.1039/C7NR08856F
000844894 0247_ $$2ISSN$$a2040-3364
000844894 0247_ $$2ISSN$$a2040-3372
000844894 0247_ $$2pmid$$apmid:29565057
000844894 0247_ $$2WOS$$aWOS:000429530400025
000844894 0247_ $$2altmetric$$aaltmetric:35737842
000844894 037__ $$aFZJ-2018-02236
000844894 082__ $$a600
000844894 1001_ $$0P:(DE-Juel1)165750$$aYu, Qingfen$$b0
000844894 245__ $$aNanoparticle wrapping at small non-spherical vesicles: curvatures at play
000844894 260__ $$aCambridge$$bRSC Publ.$$c2018
000844894 3367_ $$2DRIVER$$aarticle
000844894 3367_ $$2DataCite$$aOutput Types/Journal article
000844894 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523208656_27708
000844894 3367_ $$2BibTeX$$aARTICLE
000844894 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844894 3367_ $$00$$2EndNote$$aJournal Article
000844894 520__ $$aNanoparticles in biological systems encounter lipid-bilayer membranes as barriers. They interact with plasma membranes, membranous organelles, such as the endoplasmic reticulum and the Golgi apparatus, the nucleus, and intracellular and extracellular vesicles, such as autophagosomes, lysosomes, and exosomes. Extracellular vesicles have recently attracted particular attention, as they are involved in the transmission of biological signals and as regulators for biological processes. For example, exosomes, small vesicles containing proteins, mRNA, and miRNA, that are released by cells into the extracellular environment, have been suggested to participate in tumor metastasis. Furthermore, vesicles can be applied as targeted-drug-delivery systems. We systematically characterize wrapping of spherical nanoparticles that enter and exit vesicles, depending on particle size, vesicle size, vesicle reduced volume, and membrane spontaneous curvature. We predict the complex wrapping behavior, in particular for large particle-to-vesicle size ratios, where the shape changes of the free membrane contribute significantly to the deformation energy and where nanoparticle wrapping transitions and vesicle shape transitions are coupled. Partial-wrapped membrane-bound particles impose boundary conditions on the membrane that stabilise oblates and stomatocytes for particle entry, and prolates and stomatocytes for particle exit. Our results suggest that nanoparticles may stimulate autophagocytic engulfment, which would facilitate transport of the nanoparticles into lysosomes and would lead to subsequent degradation of nanoparticle-attached proteins.
000844894 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000844894 588__ $$aDataset connected to CrossRef
000844894 7001_ $$0P:(DE-Juel1)173916$$aOthman, Sameh$$b1$$ufzj
000844894 7001_ $$00000-0002-7706-2264$$aDasgupta, Sabyasachi$$b2
000844894 7001_ $$0P:(DE-Juel1)130514$$aAuth, Thorsten$$b3
000844894 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b4$$eCorresponding author
000844894 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C7NR08856F$$gVol. 10, no. 14, p. 6445 - 6458$$n14$$p6445 - 6458$$tNanoscale$$v10$$x2040-3372$$y2018
000844894 8564_ $$uhttps://juser.fz-juelich.de/record/844894/files/c7nr08856f.pdf$$yRestricted
000844894 8564_ $$uhttps://juser.fz-juelich.de/record/844894/files/c7nr08856f.gif?subformat=icon$$xicon$$yRestricted
000844894 8564_ $$uhttps://juser.fz-juelich.de/record/844894/files/c7nr08856f.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844894 8564_ $$uhttps://juser.fz-juelich.de/record/844894/files/c7nr08856f.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844894 8564_ $$uhttps://juser.fz-juelich.de/record/844894/files/c7nr08856f.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844894 8564_ $$uhttps://juser.fz-juelich.de/record/844894/files/c7nr08856f.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844894 909CO $$ooai:juser.fz-juelich.de:844894$$pVDB
000844894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165750$$aForschungszentrum Jülich$$b0$$kFZJ
000844894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173916$$aForschungszentrum Jülich$$b1$$kFZJ
000844894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130514$$aForschungszentrum Jülich$$b3$$kFZJ
000844894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b4$$kFZJ
000844894 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000844894 9141_ $$y2018
000844894 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000844894 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844894 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844894 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844894 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844894 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844894 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844894 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844894 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844894 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000844894 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000844894 980__ $$ajournal
000844894 980__ $$aVDB
000844894 980__ $$aI:(DE-Juel1)ICS-2-20110106
000844894 980__ $$aUNRESTRICTED
000844894 981__ $$aI:(DE-Juel1)IBI-5-20200312
000844894 981__ $$aI:(DE-Juel1)IAS-2-20090406