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Ultrasoft colloids typically do not spontaneously crystallize, but rather vitrify, at high concen-
trations. Combining in-situ rheo-SANS experiments and numerical simulations we show that shear
facilitates crystallization of colloidal star polymers in the vicinity of their glass transition. With
increasing shear rate well beyond rheological yielding, a transition is found from an initial bcc-
dominated structure to an fcc-dominated one. This crystal-to-crystal transition is not accompanied
by intermediate melting but occurs via a sudden reorganization of the crystal structure. Our results
provide a new avenue to tailor colloidal crystallization and crystal-to-crystal transition at molecular
level by coupling softness and shear.

Concentrated suspensions of Brownian spheres are
known to undergo crystallization and/or glass transi-
tion, depending on their size polydispersity and inter-
action potential[1]. With respect to hard spheres, qui-
escent crystallization in dense suspensions of soft col-
loids is in general more complicated, due to shape fluc-
tuations and adjustment[2, 3]. Whereas microgel-based
particles crystallize at roughly the same packing frac-
tion as hard spheres[4–6], hairy particles may do so at
larger concentrations, depending of the relative core-to-
grafted arm size ratio or the rate of arm exchange in
the case of micelles[7–10]. Particles with small cores and
long hairs, such as star polymers, cannot crystallize eas-
ily because arm fluctuations delay this process[11, 12],
despite the opposite expectations due to enhanced os-
motic pressure[3]. The slowdown of the nucleation pro-
cess can also be attributed to interpenetration and clus-
tering, which may act as an effective polydispersity sup-
pressing crystallization[13]. It is therefore common for
soft colloids to become kinetically trapped in metastable
states[14]. Colloidal glasses may crystallize eventually
over time, i.e., thermodynamic equilibrium is reached,
irrespectively of softness[11, 12, 15]. The action of an
external stimulus, such as shear flow, can promote either
formation or melting of ordered states, depending on its
rate and strength[16, 17]. Hence, the delicate interplay
between interparticle forces and hydrodynamic interac-
tions provides the conditions for achieving and tuning
colloidal crystallization or dynamic arrest[16–26].

The ability of shear to induce crystal formation in
soft colloids is significant and well-documented [27–32].
Depending on the rate of applied oscillatory or steady

shear, a rich variety of crystal phases can be formed,
which are often able to sustain large deformations[28–32].
However, promoting crystallization in sheared glassy or
jammed systems is challenging since their original mi-
crostructures are non-equilibrium states that may un-
dergo phase or layering transitions while deformation of
soft particles is possible[33–35]. Ultrasoft colloidal stars,
for which the size and number of arms determine the
interactions between particles[9, 36], display a very rich
glassy phenomenology[35, 37]. At the level of particle mi-
crostructure, the interpenetration of the arms is primar-
ily responsible for their complex rheological behavior[37–
39], implying that shear could promote crystal formation
of stars via their cooperative rearrangement which is me-
diated by arm disengagement. This avenue to crystal-
lization for hairy ultrasoft colloids is yet to be explored.

In addition to shear-induced order, order-to-order
transitions under the influence of an external stimulus are
ubiquitous in colloidal systems. In particular, microgels
have been found to undergo a crystal-to-crystal transi-
tion upon changing temperature in equilibrium[40] and in
the presence of an electric field[41]. For block copolymer
micelles[27, 29, 31, 42] and microgel dumbbells[43] such
transitions have been observed with increasing shear rate.
It has been argued that the crystal-to-crystal transition
occurs via two-step transformations, accompanied by
the formation of an intermediate fluid phase[29, 40, 43],
which favors local rearrangements and subsequent re-
crystallization. Such intermediate melting was thus sug-
gested to be a generic mechanism for the occurrence of
crystal-to-crystal transitions[44]. However, whether such
a transition and mechanism hold for ultrasoft colloids is
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an important open question.

In this Letter we investigate the consequences of an im-
posed shear flow on the crystallization of colloidal stars
in the vicinity of their glass transition by means of in-situ
rheo-SANS experiments and molecular dynamics simula-
tions. We find that shear promotes crystallization, both
under oscillatory (experiments) and steady (simulations)
conditions. Moreover, we provide unambiguous evidence
of a crystal-to-crystal transition under shear. Results
from measured and calculated diffraction patterns, which
are in good agreement, suggest a two-step process. At
first the fluid forms a bcc-like crystal (1st step), which
later transforms into a fcc-like one (2nd step) through a
sudden change in the crystal structure. Differently from
previous observations[29, 40, 43], we do not find evidence
of an intermediate liquid phase between the two crystals.

We investigate 1,4-polybutadiene stars with function-
ality f = 203 arms and arm molar mass of 30500
g/mol[45]. The hydrodynamic radius in toluene is 45
nm and the overlap concentration c∗ = 27 mg/ml. The
softness of the stars can be quantified by the softness
parameter SP = 0.11[35, 46], as described in the Supple-
mentary Information (SI). We study different concentra-
tions (2c∗ − 2.2c∗), corresponding to a range of pack-
ing fractions η ≈ 0.15 − 0.167 [9], in the vicinity of
the mestastable glassy regime shown in the phase di-
agram of Fig 1(a). The samples do not crystallize in
the absence of external field for the investigated time (1
day). The rheological characterization was performed by
means of dynamic oscillatory measurements using a sen-
sitive stress-controlled rheometer operating in the strain-
controlled mode (see Fig. S1). Rheo-SANS measure-
ments were carried out at the Swiss spallation neutron
source (SINQ) of the Paul Scherrer Institut in Villigen,
Switzerland. The rheo-SANS setup combined SANS and
a stress-controlled rheometer which offered the possibil-
ity of performing measurements in the radial (velocity-
vorticity, ~v,~v × ∇~v) and tangential (velocity gradient-
vorticity, ∇~v,~v × ∇~v) planes, as illustrated in Fig 1(b).
Further details are provided in the SI.

The experimental investigations are complemented
by numerical simulations of particles interacting via a
coarse-grained, ultrasoft effective potential which mimics
the interactions between star polymers[36, 47]. We per-
form molecular dynamics (MD) simulations for N = 2000
stars with functionality f = 203 at different packing
fractions (Fig. 1(a)). We use a steady shear protocol
at fixed shear rate γ̇ complemented by Lees-Edwards
boundary conditions[48] and a dissipative particle dy-
namics (DPD) thermostat[49, 50]. To quantify crystal-
lization, we calculate local and averaged bond order pa-
rameter distributions[51, 52], assigning solid-like nature
to each particle and also distinguishing between differ-
ent crystal structures[53]. We also monitor the fraction
of solid-like particles and define a crystallization time tX
when this fraction reaches 20%[54]. Numerical results are
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Figure 1: a) Theoretical state diagram of star polymers[9, 14]
in the (f, η) plane. State points investigated in this work are
marked with symbols. (b) Schematic illustration of the rheo-
SANS experiments and measured diffraction patterns in the
radial (experimental data) and tangential (simulations data)
plane. See text for details.

averaged over five independent realizations.

To compare experimental and numerical results ob-
tained under different shear protocols, we use the Péclet
number Pe = γ̇τB , where τB is the Brownian time de-
fined in terms of the self-diffusion coefficient at infinite
dilution. With this definition Péclet numbers vary in
the range 10−5 . Pe . 10−1 (see SI). The experimental
shear rate is γ̇ = γ0ω, with γ0 the strain amplitude and
ω the frequency. In both experiments and simulations,
we also calculate the degree of order parameter (DOO),
which captures the increase of the intensity in the diffrac-
tion patterns associated to the growth of crystalline order
in the system. More details are provided in the SI.

For the investigated packing fractions, the system at
rest is a metastable liquid or glass as revealed by linear
viscoelastic measurements (see Fig. S1), reflecting the
proximity of the studied state points to the fluid-crystal
(fcc) boundary predicted theoretically[9, 11]. In all cases
the samples were sheared at rates corresponding to the
solid-like region of the linear viscoelastic spectrum (Fig.
S1). To monitor the crystallization process, we report in
Fig. 2 the DOO for the amorphous (fluid or glass) to crys-
tal transition observed in (a) experiments and (b) sim-
ulations, showing the same qualitative trends: (i) there
is an induction time for crystallization to occur; (ii) at
the same star packing fraction crystallization is faster and
more pronounced with increasing Pe; (iii) under the same
shear conditions, an increase of η facilitates and speeds
up crystallization. These features are also evident in
Fig. 2(c), where the crystallization time tX is reported as
a function of Pe for different values of η. It is also found
experimentally that frequency has a stronger influence on
the DOO (Fig. 2(a)), and thus on the nucleation time,
with respect to strain amplitude. These results confirm
earlier results for hard sphere systems[18, 21, 22, 55, 56],
suggesting that in general large enough shear rates are
needed in order to induce crystallization. Some quanti-
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tative differences between simulations and experiments
(the former being more sensitive to shear rate) are at-
tributed to the different protocols used.

The calculation of bond order parameters[52, 53] in
simulations reveals that the fluid-to-crystal transition in
most cases, and always for large enough Pe, gives rise to a
fcc-like crystal (see Fig. S2). While for very low values of
Pe (Pe . 10−3) no crystallization takes place, for inter-
mediate values of γ̇ we observe a two-step process: at first
a transition occurs from fluid to a bcc-like crystal, later
followed by a second transition to a fcc/hcp-like crystal.
Both transitions are accompanied by clear discontinuities
in the energy of the system (Fig. S3). A crystal-to-crystal
transition is found for 0.159 ≤ η ≤ 0.167 at sufficiently
small Pe. On decreasing packing fraction, the crystal-to-
crystal transition is observed by increasing Pe.

Such a behavior is also found in experiments at η =
0.167 upon the application of strain amplitude from 0.1%
to 300% (within 600s) with a frequency ω = 5 rad/s, as
reported in Fig. 3(a): a transition from amorphous glass
to crystal takes place at Pe ∼ 1.4 × 10−4 (γ0 = 0.5%),
followed by a crystal-to-crystal transition at strain am-
plitudes higher than 120% (Pe & 3.3× 10−2), well above
rheological yielding. A crystal-to-crystal transition was
only observed for ω = 5 rad/s and not for larger frequen-
cies, suggesting that not too high shear rates are required
to induce the first transition to an intermediate crystal
structure. Although it is not straightforward to compare
parameters obtained with different shear protocols, these
findings are in qualitative agreement with simulations.

From the radial rheo-SANS diffraction patterns shown
in Fig. 3(a) we can speculate that a transition takes place
between two hexagonal order structures oriented along
different directions. To verify this interpretation, we rely
on numerical simulations and calculate diffraction pat-
terns from the particle coordinates[57]. In Fig. 3(b.1,b.2)
we report the diffraction patterns in the radial direction
of the first and second crystal respectively. The numeri-
cal results are again in good agreement with the experi-
mental SANS patterns (Fig 3(a)), despite the difference
in the used shear protocol. To visualize the two (fluid-
to-crystal and crystal-to-crystal) transitions, movies from
the simulations are presented in the SI, while snapshots
of the two crystal structures in the tangential plane are
reported in Fig. 3(c.1-c2). After completing the 1st step
(Fig. 3(b.1)), the crystal is organized into two different
layers oriented orthogonally both to the vorticity and to
the velocity gradient directions due to the bcc geome-
try, while after the 2nd step the layers reorganize and
become orthogonal with respect to the gradient direction
only (Fig. 3(b.2)). These features are clearly identified by
looking at the calculated density profiles along different
directions respectively for bcc (Fig. 3(d.1)) and fcc/hcp
particles (Fig. 3(d.2)). We observe oscillations in the den-
sity in both the velocity-gradient and vorticity directions
after the first step. However, after the 2nd step, a flat
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Figure 2: Degree of ordering versus time calculated for exper-
iments (a) and simulations (b). In (a) the shear parameters
are: ω = 10 rad/s and γ0 = 11.5% (squares), ω = 5 rad/s
and γ0 = 15% (circles), ω = 10 rad/s and γ0 = 15% (trian-
gles). Lines are guides to the eye to highlight the onset of
crystallization; (c) nucleation time tX as function of Pe for
simulations at different packing fractions (filled symbols) and
for experiments (scaled by an arbitrary factor) at η = 0.167
(open symbols as in panel (a)).

profile is observed for the vorticity axis, while oscillations
survive in the ∇~v direction. The layers of fcc particles
are only orthogonal to ∇~v at all times. Figure 3(d.2) also
shows that an enhancement of oscillations along the ∇~v
axis after the 2nd step for fcc particles is associated to a
decrease of the same oscillation for bcc ones. These fea-
tures clearly indicate that the formation of a bcc lattice
is responsible for the peculiar structure observed in the
1st step. Indeed, the layering orthogonal to the vorticity
is completely lost once these particles reorganize into a
fcc, giving rise to the layers commonly observed in other
shear-induced experiments[29, 34, 42, 55].

To connect our findings with previous observations
of crystal-to-crystal transformations, we investigate
whether in our system there is evidence of interme-
diate melting, at least locally, which could help the
(re)organization into a different lattice. To this aim we
monitor the fraction of particles of each species (liquid,
fcc, bcc, hcp) during the second step, finding that melt-
ing does not occur during the bcc-like to fcc-like transi-
tion (see Fig. S4). This constitutes a striking difference
with respect to the case of thermoresponsive microgels
studied in Ref. [40] and may be attributed in part to the
different protocol used in that work, where the transition
was induced by varying the temperature, rather than by
shear. On the other hand, Refs.[29, 43] reported interme-
diate melting in the presence of shear, without notable
soft particle deformation. For the star polymers under
shear studied in the present work, the reorganization of
the crystal lattice between two competing structures oc-
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Figure 3: (a) SANS diffraction patterns in the radial direction and strain amplitude sweep depicting the measured G′ and G”
for stars at η = 0.167. The flipping between the two crystals was observed for ω = 5 rad/s in a range of strain amplitude
(0.1-300 %), amounting to a range in Péclet number (0 − 8 × 10−2). Vertical arrows indicate the strain values at which the
images were extracted; (b-d) Numerical results for simulations at η = 0.167 and Pe = 2 × 10−3: radial diffraction patterns
after the 1st step (b.1) and after the 2nd step (b.2); system snapshots in the tangential view after 1st step (c.1) and after 2nd

step (c.2). Here the size of particles is reduced to help visualization; density profiles measured for bcc (d.1) and fcc/hcp (d.2)
particles in the vorticity direction (upper panels) and gradient direction (lower panels). Continuous lines are drawn to indicate
the behaviour of the density profiles in the absence (flat line) or in the presence (periodic curve) of layers of particles.

curs without intermediate melting even at the local level.
Instead, we observe a sudden change, i.e., a ’flipping’,
between bcc and fcc lattice, which provides an alterna-
tive mechanism to realize a crystal-to-crystal transition
in this system. These findings are linked to the peculiar
nature of star polymers which allows for a direct trans-
formation between two crystals, thanks to their ultrasoft
interactions. Indeed, according to the theoretical phase
diagram (Fig. 1(a)), for the studied state points the sys-
tem is approaching a glass transition but its underlying
equilibrium state is the fcc crystal. Being dominated by
Yukawa-like repulsions at low packing fractions, the free
energy difference between fcc and bcc structure is very
small[58]. Thus, the competition between these two crys-
talline structures, which is influenced by Pe, determines
the final state of the sheared system. Based on our re-
sults we suggest that at high enough Pe the system expe-
riences a fluid-to-crystal directly into fcc due to the large
rearrangements induced by shear. On the other hand,
at lower Pe shearing is not strong enough and the sys-
tem is only able to complete the crystallization process in
two steps, by first attaining an intermediate (metastable)
bcc-like state and then reaching a situation comprising
a mixture of bcc and fcc structures. This is confirmed
by the fact that at even lower Pe crystallization is not
observed, whereas the value of threshold Pe to achieve a
two-step crystallization increases with decreasing packing
fraction. Importantly, once the 2nd step is reached, the
crystal does not melt upon shear cessation, but remains
stable over time in both experiments and simulations.
We stress that the final structure with layers parallel to
the flow is in agreement with previous studies of shear-
induced crystallization[29, 34, 42, 55]. However, the in-

termediate structure occurring after the 1st step and the
mechanism behind the crystal-to-crystal transition are
novel features of the present study, that are attribute to
to the ultrasoftness of colloidal star polymers.

In summary, the application of shear induces crystal-
lization of ultrasoft star polymer suspensions at packing
fractions in the vicinity of the glass line. The good agree-
ment between experiments and simulations despite the
different shear protocol used strongly supports the gen-
erality of the results. In most cases, a fluid-to-crystal
transition under shear is found, which is facilitated by
increasing Pe and increasing packing fraction. However,
for 0.159 ≤ η ≤ 0.167 there exists an intermediate range
of Pe where stars undergo a distinct crystal-to-crystal
transition. The transition consists of a transformation
between a bcc-dominated and an fcc-dominated crystal,
which occurs via a flipping of the crystal structure and
not by an intermediate melting, differently from previ-
ous studies. Our results indicate that the combination of
shear and softness is important for shedding light on the
fundamental physics underlying phase transitions as well
as tailoring the organization of soft materials with desired
properties. To this end, the tunable softness of star poly-
mers is very valuable and future directions will include
the control and manipulation of crystal-to-crystal transi-
tions in different regions of the phase diagram, changing
both functionality and packing fractions.
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Additional details on experimental methods

Star softness: To quantify the softness of the stars
we make use of the Daoud-Cotton model[1], which
can be applied because the stars fullfill the condition
N >> f1/2v−2m , where vm is the excluded volume of
the monomer. The softness parameter is defined as
SP = Rcor

Rsw
= f3/10N−3/5, where Rsw and Rcor are the

radii of the swollen regime and of the core, respectively.
This yields a rather low value SP = 0.11, indicative of
rather soft objects[1].

Rheological characterization: Shear rheometric mea-
surements were performed with a sensitive stress-
controlled rheometer operating in the strain-controlled
mode (Physica MCR 501, Anton Paar, Austria). A coax-
ial cylindrical Couette geometry with an inner rotating
titanium bob of diameter 49 mm and an outer glass cup
of diameter 50 mm was used. Their length was 120
mm. The temperature was set at 20◦C by means of a
water-ethylene glycol recirculating bath. The outer at-
mosphere was saturated with toluene by means of soaked
tissues in order to minimize the risk of toluene evapora-
tion for about 1 hour. Measurements included (i) dy-
namic frequency sweeps by imposing a linear oscillatory
strain γ = γ0sin(ωt) in order to probe the viscoelastic
relaxation spectrum, i.e., the frequency-dependent stor-
age (G′) and loss (G′′) moduli in the range 0.1 − 100
rad/s. The stress response is σ = σ0sin(ωt) + δ =
γ0(G′sin(ωt) +G′′cos(ωt)) with σ0 being the stress am-
plitude and δ the phase angle (tanδ = G′′/G′). The vis-
coelastic spectra of the studied concentrations are shown
in Fig. S1; (ii) dynamic strain sweeps with a duration of
about 8 min, in order to determine the linear viscoelastic
and yielding regimes. It involves oscillations at constant
frequency ω and continuously increasing γ0 from 0.1%
to 300% in strain amplitude. The experimental Brown-
ian time, defined as τB = R2

H/D0, where RH is the hy-
drodynamic radius and D0 the self-diffusion coefficient
of the stars at infinite dilution, is τB = 5.485 ms, so
that the range of explored Péclet numbers Pe = γ̇τB is

2.7×10−5 < Pe < 8.2×10−2 (see comments in the main
text and in the Péclet number subsection below about Pe
values); (iii) dynamic time sweeps at different frequen-
cies and strain amplitudes. These tests were preceded by
steady shear measurements at different rates (from 1s−1

to 100s−1) in order to shear-melt (rejuvenation process)
the structure of the system. This protocol allowed eras-
ing the sample’s history (possible residual stresses during
loading), ensuring reproducible initial conditions for the
measurements.

Rheo-SANS: The same rheometer was used for the
SANS measurements under flow. The Couette ge-
ometry allowed performing measurements in both ra-
dial (velocity-vorticity) and tangential (velocity gradient-
vorticity) planes by sending the neutron beam along the
velocity gradient and velocity directions, respectively (see
Fig.1a of the manuscript). From the Rheo-SANS mea-
surements, we calculate the degree of order defined as

DOO =
∑6

i=1 Ipi−
∑6

i=1 Ivi∑6
i=1 Ipi

, where Ip and Iv are the in-

tensity of the peaks and valleys of the diffraction pat-
terns.

Additional details on numerical methods
Simulations: In order to mimic the effect of the sol-

vent acting on the colloids and to ensure Galileian in-
variance, we use a dissipative particle dynamics (DPD)
thermostat[2, 3] coupled to our equations of motion, i.e.

dri
dt = vi

mi
dri
dt =

∑
j 6=i
(
FCij + FDij + FRij

) (1)

Here, FCij are the conservative forces, associated to the

interaction potential between particles i and j, while FDij
and FRij are a dissipative and random force, respectively,

FDij = −ξωD (rij) (r̂ij · vij) r̂ij
FRij = σωR (rij) θij r̂ij (2)

with ξ a friction coefficient, θij = θji uniform random
numbers with zero mean and unit variance, vij = vi−vj
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FIG. S1: Dynamic storage (G’, full symbols) and loss moduli
(G”,open symbols) of the stars measured with γ0 = 0.01%,
at c/c∗ = 2.05 corresponding to η = 0.152 (blue circles) ,
and at c/c∗ = 2.18 corresponding to η = 0.167 (red squares).
The shaded region indicates the regime of frequencies used in
rheo-SANS (5 − 10 rad/s).

the relative velocity between particle i and j, r̂ij the
unit vector of the vector rij = ri − rj and rij =
|ri − rj | the distance between particle i and j. The two

weight functions are related as wD (rij) =
[
wR (rij)

]2
=(

1− rij
rDPD
c

)s
if r < rDPDc , where rDPDc is a cutoff value

that we have fixed to be equal to the first minimum of
the radial distribution function of the system in equilib-
rium. The equations of motion were computed with the
scheme of Peters [4] using a time step of ∆t = 0.002. We
fix ξ = 25 and s = 1.

Effective potential:. Star polymers are modeled by the
effective center-center potential developed by Likos and
coworkers [5]:

βV (r) =





5
18f

3
2

[
−ln

(
r
σ

)
+
(

1 +
√
f
2

)−1]
for r ≤ σ

5
18f

3
2

(
1 +

√
f
2

)1 (
σ
r

)
exp

[
−
√
f(r−σ)
2σ

]
for r > σ

(3)
where σ is the corona diameter and f is the functional-
ity (number of arms). In the simulations, we consider
monodisperse stars. The potential cut-off is fixed to
rc = 3.0σ.

Simulation units: Length is measured in units of σ
while energy in units of kBT . Simulations are performed
at kBT = 1 due to the athermal nature of the effective
potential for all studied packing fractions η = πσ3

6
N
V ,

where N = 2000 is the number of particles and V the
volume of the simulation box. Time is measured in units

of
√

mσ2

ε .

Péclet number: In order to compare our results with
experiments we also use the Péclet number Pe = γ̇τB

evaluated from the self-diffusion coefficient at infinite di-
lution. In our simulations, τB ∼ 10−2 MD units, so that
the explored range of Péclet numbers is 10−4 < Pe <
10−2. This range of values is comparable to the experi-
mental ones, despite the difference in the used shear pro-
tocol and to the absence of explicit solvent in the simu-
lations. The Péclet numbers used in our investigations
seem to be very low because they are calculated with re-
spect to D0, but when the self-diffusion coefficient D at
the studied packing fractions is taken into account, the
so-called dressed Péclet number P̃ e = PeD0/D is much
larger, i.e. 1 . P̃ e . 102 for η = 0.167. These numbers
imply quite a large shear rate imposed on the system.
Since in experiments we do not have access to D but
only to D0, we use the standard Péclet in order to have
a meaningful comparison with simulations.

DOO calculation in simulations: Given a diffraction
pattern, we define the degree of order as

DOO =

∑
q~v,q~v×∇~v

Ip(q~v, q~v×∇~v)− Iv(q~v, q~v×∇~v)∑
q~v,q~v×∇~v

Ip(q~v, q~v×∇~v)
(4)

where (q~v, q~v×∇~v) are the vectors in the reciprocal space
corresponding to the radial direction, Ip(q~v, q~v×∇~v) is
the intensity value for each set of wave vectors (peaks
and background), while Iv(q~v, q~v×∇~v) < Ithreshold are
all the intensities with a value smaller than the thresh-
old value Ithreshold that we set to Ithreshold = 20. In
such a way, when no clear signal of crystallization is
found (i.e. all the intensities are smaller than Ithreshold),
Ip(q~v, q~v×∇~v) = Iv(q~v, q~v×∇~v) and DOO = 0. On the
other hand when the intensity peaks signal the increas-
ing order in the system Ip(q~v, q~v×∇~v) > Iv(q~v, q~v×∇~v) and
DOO > 0.

Density profiles: The density profile is computed by
dividing the simulation volume along a given axis into
boxes of thickness σ and area L× L where L is the edge
of the cubic simulation box. We then evaluate the density
of particles within each box defined as Nbox/Vbox where
Nbox is the number of particles and Vbox is the volume
of a box of thickness σ. The evolution of the density
along a chosen axis gives information on the layering ef-
fect occurring when crystals are formed. In particular a
flat profile indicates that the distribution of particles is
homogeneous, while oscillations highlight the formation
of layers orthogonal to the axis along which the density
profile has been evaluated.

Additional results
Analysis of the crystal order: The analysis of the crys-

tal structure is based on the calculations of the bond
orientational order parameter distributions[6, 7]. In par-
ticular, the local observable q6 is used to assign solid-like
nature to each particle in the simulation according to the
number of solid-like connections as done in [8]. Following
the work of Russo and Tanaka[9], to distinguish between
different crystal structures, we calculate q6 to differen-
tiate liquid-like and solid-like particles. In addition to
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FIG. S2: Simulation results for η = 0.167: (a) distribution
of the orientational order parameters w6 for different Péclet
numbers. Here, t1 and t2 are two time values referring to the
fluid-to-crystal and crystal-to-crystal transitions respectively
(i.e. t1 < t2) for Pe = 2 × 10−3; (b) distribution of the
orientational order parameters w4 for Pe = 2× 10−3 at times
t1 and t2 .

separate within solid particles, i.e. bcc-like,fcc-like and
hcp-like we also calculate the averaged orientational or-
der parameters w4 and w6. In Fig. S2(a) the distribution
of w6 is reported for several values of the Péclet number.
At high Pe, the fluid undergoes a single transition to a
fcc-like crystal.

For Pe = 2×10−3 we calculate P (w4) at time t1 (after
the fluid-to-crystal transition) and t2 (after the crystal-
to-crystal transition), finding that the crystalline order at
t1 is bcc-like, later becoming fcc-like at t2. In Fig. S2(b)
the distribution of w4 for t1 and t2 is reported, allowing
to characterize the fcc or hcp order. We find that while
in the first step both types of order are present, in the
second crystal the fcc-like nature is dominant over the
hcp one.

The potential energy behaviour: In Fig. S3 the poten-
tial energy per particle versus time is reported for simu-
lations at η = 0.167 and different Péclet numbers. While
for Pe = 5×10−4 the system remains fluid and the energy
is constant, for Pe = 10−2 a sudden drop is observed at
early times indicating a fluid-to-crystal transition. How-
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FIG. S3: Potential energy per particle versus time for η =
0.167 and different values of the Péclet number.
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FIG. S4: Simulation results for η = 0.167: fraction of particles
of each species (see legends) versus time. Inset: fraction of
solid-like particles X (t).

ever, for Pe = 2 × 10−3, the energy drops twice: a first
drop corresponding to a fluid-to-crystal transition at a
larger energy value with respect to the previous case, fol-
lowed at much later times by a second drop.

Crystal-to-crystal transition: In Fig. S4 the fraction
of particles of each species, including fluid-like particles,
is shown as a function of time. It is clear that in the first
step the majority of particles are of bcc type, while in the
second step a clear change from bcc to fcc takes place,
with the hcp-like particles being constant. Fluid particles
remain very few and their fraction does not change across
the crystal-to-crystal transition. This is evident also from
the inset of Fig. S4, where the fraction of particles in the
crystalline phase X (t) is shown to remain constant at all
times after the initial fluid-to-crystal transition. Thus,
no intermediate melting, even at the local level, occurs
across the crystal-to-crystal transition.

Supplemental Movies
In all movies, the size of particles was reduced in order

to help visualization.
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FIG. S5: Numerical diffraction patterns for η = 0.167 and
Pe = 2 × 10−3 in the tangential direction for (a) 1ststep and
(b) 2ndstep.

Movie S1: Fluid-to-crystal (fcc) transition at Pe =
10−2 viewed in the radial plane.

Movie S2: Fluid-to-crystal (fcc) transition at Pe =
10−2 viewed in the tangential plane.

Movie S3: Fluid-to-crystal (bcc) transition at Pe =
2× 10−3 viewed in the tangential plane.

Movie S4: Fluid-to-crystal (bcc) transition at Pe =
2× 10−3 viewed in the radial plane.

Movie S5: Crystal (bcc)-to-crystal (fcc) transition at
Pe = 2× 10−3 viewed in the tangential plane.
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