001     844898
005     20240619091236.0
024 7 _ |a 10.1007/s10008-017-3829-3
|2 doi
024 7 _ |a 1432-8488
|2 ISSN
024 7 _ |a 1433-0768
|2 ISSN
024 7 _ |a 2128/19117
|2 Handle
024 7 _ |a WOS:000427805100007
|2 WOS
037 _ _ |a FZJ-2018-02240
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Nikolaev, Konstantin G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Bimetallic nanowire sensors for extracellular electrochemical hydrogen peroxide detection in HL-1 cell culture
260 _ _ |a Berlin
|c 2018
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529997741_22537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The present study of nanoelectrochemical sensors prepared by directed electrochemical nanowire assembly (DENA) is defined by the requirements of electrochemical analysis, where the transducer function of metallic nanowires is synergetically combined with their electrochemical catalytic activity with respect to a particular analyte. We show for the first time that this technique can be employed for metals (Pd, Au) and their bimetallic compositions to create various multicomponent sensor nanomaterials on a single chip without the use of multistep lithography for the spatially resolved analysis of solutions. The nanostructures of various compositions can be individually addressed when used in liquid media, so that the particular surface properties of the individual nanoarray elements can be used for the electrochemical analysis of specific analytes. The sensor application of these devices in electrolytes and cell culture conditions has been demonstrated for the first time. As an example, the Pd-Au nanowires prepared by DENA were used for a non-enzymatic analysis of H2O2 with a linear concentration interval of 10−6–10−3 M, sensitivity of 18 μA M−1, and detection limit of 3 × 10−7 M at as low absolute value of the detection potential as − 0.05 V. This sensor was also proven for the detection of hydrogen peroxide in HL-1 cell culture, demonstrating good biocompatibility and support for the cell culture conditions. Using various DENA-grown electrochemical compositions on a single chip, a novel multisensor platform is proposed for the determination of various analytes in electrolyte solutions for biocompatible sensor arrays, flexible multianalyte environmental and technological process monitoring, and healthcare areas.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 1
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 1
|u fzj
700 1 _ |a Neumann, Elmar
|0 P:(DE-Juel1)156529
|b 2
|u fzj
700 1 _ |a Ermakov, Sergei S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ermolenko, Yuri E.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 5
|u fzj
700 1 _ |a Mourzina, Yulia
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1007/s10008-017-3829-3
|g Vol. 22, no. 4, p. 1023 - 1035
|0 PERI:(DE-600)1478940-1
|n 4
|p 1023 - 1035
|t Journal of solid state electrochemistry
|v 22
|y 2018
|x 1432-8488
856 4 _ |u https://juser.fz-juelich.de/record/844898/files/Nikolaev2018_Article_BimetallicNanowireSensorsForEx.pdf
|y Restricted
856 4 _ |y Published on 2017-11-28. Available in OpenAccess from 2018-11-28.
|u https://juser.fz-juelich.de/record/844898/files/PGI-8-2582_Revision_submit_for%20JUSER%20with%20FIgures.pdf
856 4 _ |y Published on 2017-11-28. Available in OpenAccess from 2018-11-28.
|x icon
|u https://juser.fz-juelich.de/record/844898/files/PGI-8-2582_Revision_submit_for%20JUSER%20with%20FIgures.gif?subformat=icon
856 4 _ |y Published on 2017-11-28. Available in OpenAccess from 2018-11-28.
|x icon-1440
|u https://juser.fz-juelich.de/record/844898/files/PGI-8-2582_Revision_submit_for%20JUSER%20with%20FIgures.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-11-28. Available in OpenAccess from 2018-11-28.
|x icon-180
|u https://juser.fz-juelich.de/record/844898/files/PGI-8-2582_Revision_submit_for%20JUSER%20with%20FIgures.jpg?subformat=icon-180
856 4 _ |y Published on 2017-11-28. Available in OpenAccess from 2018-11-28.
|x icon-640
|u https://juser.fz-juelich.de/record/844898/files/PGI-8-2582_Revision_submit_for%20JUSER%20with%20FIgures.jpg?subformat=icon-640
856 4 _ |y Published on 2017-11-28. Available in OpenAccess from 2018-11-28.
|x pdfa
|u https://juser.fz-juelich.de/record/844898/files/PGI-8-2582_Revision_submit_for%20JUSER%20with%20FIgures.pdf?subformat=pdfa
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/844898/files/Nikolaev2018_Article_BimetallicNanowireSensorsForEx.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/844898/files/Nikolaev2018_Article_BimetallicNanowireSensorsForEx.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/844898/files/Nikolaev2018_Article_BimetallicNanowireSensorsForEx.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/844898/files/Nikolaev2018_Article_BimetallicNanowireSensorsForEx.jpg?subformat=icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844898
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156529
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J SOLID STATE ELECTR : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21