1 May 2018

vl [cs.DC]

5

LO)
-
Q
L0
-
e
<

@

SAGE: Percipient Storage for Exascale Data Centric Computing

Sai Narasimhamurthy, Nikita Danilov, Sining Wu, Ganesan Umanesan

Seagate Systems UK, UK

Stefano Markidis, Sergio Rivas-Gomez, Ivy Bo Peng, Erwin Laure

KTH Royal Institute of Technology, Sweden

Dirk Pleiter

Jilich Supercomputing Center, Germany

Shaun de Witt
Culham Center for Fusion Energy, UK

Abstract

We aim to implement a Big Data/Extreme Computing (BDEC) capable system infrastructure as we head towards the
era of Exascale computing - termed SAGE (Percipient StorAGe for Exascale Data Centric Computing). The SAGE
system will be capable of storing and processing immense volumes of data at the Exascale regime, and provide the
capability for Exascale class applications to use such a storage infrastructure.

SAGE addresses the increasing overlaps between Big Data Analysis and HPC in an era of next-generation data
centric computing that has developed due to the proliferation of massive data sources, such as large, dispersed scientific
instruments and sensors, whose data needs to be processed, analyzed and integrated into simulations to derive scientific
L—and innovative insights. Indeed, Exascale I/O, as a problem that has not been sufficiently dealt with for simulation

codes, is appropriately addressed by the SAGE platform.

The objective of this paper is to discuss the software architecture of the SAGE system and look at early results we
(O have obtained employing some of its key methodologies, as the system continues to evolve.
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1. Introduction

Exascale computing is typically characterized by the
availability of infrastructure to support computational ca-
pability in the order of an ExaFLOP. This definition is
now more broadly understood to include the storage and
processing of an order of an Exabyte of data as part of
a scientific workflow or a simulation. Based on various
international Exascale roadmaps [I], we envision Exascale
computing capable infrastructures, capable of exploitation
by applications and workflows for science and technologi-
cal innovation, to be available to the community sometime
in the 2021-2023 timeframe.

Computing infrastructure innovation has been driven
by Moore’s law and the development of even more paral-
lelism with multi-core and many-core processing to accom-
modate the increasing performance requirements of Exas-
cale class problems. As an example, compute core concur-
rencies (billion-way concurrency on some machines!) at
Exascale will have increased about 4,000 times compared
to early PetaFLOP machines. However I/O and storage
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have lagged far behind computing. Storage performance
in the same time period is predicted to improve only 100
times, according to early estimates provided by Vetter et
al. [2]. In fact, from the time of publication of this work,
the performance of disk drives per unit capacity is actu-
ally decreasing with new very high capacity disk drives on
the horizon. Simultaneously, the landscape for storage is
changing with the emergence of new storage device tech-
nologies, such as flash (available today) and the promise
of non-volatile memory technologies available in the near
future. The optimal use of these devices (starting with
flash) in the I/O hierarchy, combined with existing disk
technology, is just beginning to be explored in HPC [3]
with burst buffers[4].

The SAGE system ("SAGE”) proposes hardware, to
support a multi-tiered I/O hierarchy and associated in-
telligent management software, to provide a demonstrable
path towards Exascale. Further, SAGE proposes a radi-
cal approach in extreme scale HPC, by moving traditional
computations, typically done in the compute cluster, to
the storage system, which provides the potential of sig-
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nificantly reducing the energy footprint of the overall sys-
tem [5]. This design helps to move towards the Perfor-
mance/Watt goals of Exascale class systems [6].

The primary objective of this paper is to present the
architecture of the SAGE software stack ("SAGE stack”)
providing more detail on our introductory work [7]. We
also present early results from two of the components of
the SAGE stack specifically in the area of programming
models, which are part of High Level HPC APIs in Fig-
ure [2] clearly recognizing that results for the various other
stack components is something we are planning to present
in upcoming works as a follow-up to this work. The paper
is organized as follows. Section [2] describes the challenges
that storage systems need to address to support scalable
and high performance I/O on an Exascale supercomputer,
and it also introduces how the SAGE project meets these
challenges. Section [3] describes the SAGE platform archi-
tecture and software stack. Section[4] presents the selected
results of the components of the SAGE stack. Section
describes the related work. Finally, Section [6] summarizes
the paper and outlines the future work.

2. Exascale Challenges for Storage Systems

Our goal was to design and develop an I/O system with
an associated software stack to meet the challenges Exas-
cale computing poses. We identified five exascale chal-
lenges together with possible approaches to meet these
challenges as part of building the SAGE system.

1. Heterogenous Storage Systems. The ability
to store extreme volumes of data and manage exceptional
data rates requires storage device technologies that are
capable of meeting a wide spectrum of performance and
capacity points. This capability is only made possible by
having an architecture that can reasonably incorporate a
wide variety of storage device technologies to meet various
performance and capacity objectives at reasonable costs,
as there is clearly no single storage device type that works
optimally for all workloads. Further, most workloads re-
quire a variety of storage types to deliver good performance
at an acceptable cost [§]. Indeed, this requirement is well
recognized by the European as well as the International
community. Storage systems at Exascale need to incor-
porate a deep I/O hierarchy consisting of various device
types [0, [10]. In the SAGE platform, the top tiers consist
of NVRAM pools that have higher performance but lower
capacity, which hosts pre-fetched data, absorb I/0O bursts,
and then drain to lower tier devices, such as disks and
archive, which are optimized for capacity. To address the
difficulty of optimized data placement on different tiers
of the SAGE system [11], we further developed a series
of tools which includes Hierarchical Storage Management
(CHSM”), ARM Forge for characterizing I/O workloads and
the RTMHS tool to recommend data placement on het-
erogenous systems [12].

2. Performance at Scale. Existing POSIX I/O se-
mantics cause severe performance and scalability bottle-

necks that were recognized and became very well under-
stood following many efforts to scale out HPC [13]. This
behavior is a result of POSIX’s very strict transactional
and consistency semantics - which makes it unsuitable
for highly shared environments, such as those in scale-
out HPC. Further, much of the POSIX metadata needed
to meet its semantic requirements are not interesting for
many applications. There is a clear need to move beyond
POSIX semantics and adopt new 1/O models.

Object storage technology, which has been successful
in meeting the extreme volume constraints in the cloud
community, is already being investigated within HPC and
we aim to utilize this approach as a software framework
for the platform [I4]. Within SAGE, we use object stor-
age technology and in particular Mero which is Seagate’s
object storage platform is utilized as a base, with an API
that is called Clovis. An Object Storage API is required
that can ingest data from external data sets as well as han-
dle data from simulations. The Object Storage API will
need to provide a seamless view of data, independent of its
location in the I/O hierarchy. Most importantly, it allows
to scale the performance avoiding POSIX I/0 limitations.

3. Minimize Data Movement. We need a system
that can provide compute capability within storage to run
various data analytics and pre/post processing pieces of
the workflow in parallel with running simulations. The
ability to run in-storage compute is crucial to avoid the
energy costs incurred by constantly moving data between
the compute and the storage system [15]. Within SAGE,
we use the function-shipping capability of the Mero ob-
ject storage platform to compute in-storage and use MPI
streams for offloading computations to processes running
on I/O servers [16].

4. Availability and Data Integrity. Failures in
infrastructure and applications are not an exception, but
rather the norm at Exascale [I7]. The sheer number of
software and hardware components present in Exascale
systems makes the likelihood of failure extremely high dur-
ing a short interval of time. A highly available infras-
tructure is needed that is always-on from an application
perspective. The sheer volume of data in Exascale storage
systems make the probabilities of data corruptions exceed-
ingly high. Within SAGE, we provide data integrity and
availability via the Mero object storage platform.

5. Legacy and Emerging HPC Applications.
The platform should support appropriate use case data
formats and legacy application interfaces (parallel file sys-
tems, POSIX) to enable their smooth transition to Exas-
cale. SAGE also needs to interface with emerging big data
analytics applications (on top of the API) to access the
rich features of these tools, and the Volumes, Velocity and
Variety (potentially) of data coming from sensors, instru-
ments and simulations. We studied a portfolio of scientific
data-centric applications that have been used to provide
requirements to the development of the SAGE system and
to validate the developments in the projects. Th applica-
tions ("SAGE applications”) we chose included:



e iPIC3D is a massively parallel Particle-in-Cell Code
for space-weather [18] [19].

e NEST is simulator for spiking neural network models
in brain science [20].

e Ray is a massively parallel meta-genome assembler
21].

e JURASSIC is a fast radiative transfer model simu-
lation code for the mid-infrared spectral region [22].

e EFIT++ is a plasma equilibrium fitting code with
application to nuclear fusion [23].

e The ALF code performs analytics on data consump-
tion log files

e Spectre is a visualization tool providing near real
time feedback on plasma and other operational con-
ditions in fusion devices.

e Savu provides a tomography reconstruction and pro-
cessing pipeline [24].

In order to support legacy and emerging data-analytics
applications, we further develop widely used legacy HPC
interfaces, such as MPI and HDF5, to exploit the SAGE
platform.

3. SAGE Platform Architecture

We next describe the high-level design of the SAGE
system and then provide details on the SAGE platform ar-
chitecture, based on the challenges and solutions outlined
in the previous section. The fundamental requirements
of the SAGE system justifies our top level architecture
with an I/O hierarchy with in-storage compute capabili-
ties, driven by an Object Storage infrastructure. We will
focus on the software stack in this paper.

3.1. SAGE Hardware

To drive discussion on the software stack, we briefly
discuss the SAGE hardware. Figure [I] shows the concep-
tual architecture of the SAGE platform.

The SAGE platform consists of multiple tiers of storage
device technologies at the bottom of the stack, the Uni-
fied Object-Based Storage Infrastructure. The system does
not require any specific storage device technology type and
accommodates upcoming NVRAM, existing flash and disk
tiers. For the NVRAM tier, we are using Intel 3D XPoint
technology [25] in our Tier 1. We will also use emulated
NVDIMMSs (Non-Volatile DIMMSs) in Tier-1 because of the
lack of NVDIMM availability in vendor roadmaps. We
are using Flash based solid state drives in Tier 2. Se-
rial Attached SCSI high performance drives are contained
in Tier-8 and archival grade, high capacity, slow disks
( based on Serial ATA and Shingled Magnetic Record-
ing) are contained in Tier-4. These tiers are all housed
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Figure 2: SAGE System Stack.
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in standard form factor enclosures that provide their own
compute capability, enabled by standard x86 embedded
processing components, which are connected through an
FDR infiniband network. Moving up the system stack,
compute capability increases for faster and lower latency
device tiers.

The base hardware platform which has been installed
at the Jiilich Supercomputing Center in 2017 and it will
be described in a different report/paper.

8.2. SAGFE Software Stack

We have designed and developed a software stack capa-
ble of exploiting the SAGE Unified Object-Based Storage
Infrastructure. A diagram of the SAGE software stack is
shown in Figure [2] The SAGE software consists of three
main layers: first, Mero is at the base of the software stack
that provides the distributed object storage platform; sec-
ond, the Clovis provides the higher-level layer with an in-
terface to Mero; third, applications’ APIs (MPI, HDF5,
...) and tools link applications with Clovis.

3.2.1. Mero

Mero is at the base of the SAGE software stack. Mero
provides the Exascale-capable object storage infrastruc-
ture that drives the storage hardware [26]. Mero pro-
vides the Exascale-capable object storage infrastructure
that drives the storage hardware. Mero consists of a core



that provides the basic object storage features that are
typically available in many object stores. This consists of
the ability to read/write objects with metadata for objects
that can be defined in a Key Value store. The core also
provides resource management of caches, locks, extents,
etc on top of basic hardware and provides the basic infras-
tructure needed for hardware reliability such as distributed
RAID enabled through Server Network Striping.

Containers. Containers are the basic way of group-
ing objects as per user definitions. Containers provide la-
belling of objects so as to provide a form of virtualisation
of object name space. Containers can be based on perfor-
mance(Eg: high performance containers for objects to be
stored in higher tiers) and data format descriptions(HDF5
containers, NetCDF containers, etc). There is in fact no
limitation to the ways in which objects can be grouped
into containers. Containers are also useful for performing
one shot operations on objects such as shipping a function
to a container.

High Availability (HA) System. Component reli-
ability is not expected to increase in the coming years. Yet
data has shown that the number of failures scales propor-
tionally with respect to certain units, such as the amount
of RAM, the number of cores, the number of NICs, etc.
Making projections from existing systems [27] also in-
dicates that we can expect several hardware failures per
second at Exascale, in addition to software failures result-
ing in crashed nodes. To maintain service availability in
the face of expected failures, the global state (or configu-
ration) of the cluster may need to be modified, by means
of a repair procedure.The HA subsystem for SAGE will
perform automated repair activities within storage device
tiers in response to failures. The subsystem monitors fail-
ure events (inputs) throughout the storage tiers. Then,
on the basis of the collected events, the HA system de-
cides whether to take action. The HA subsystem does not
consider events in isolation but quantifies, over the recent
history of the cluster, a quasi-ordered sets of events to de-
termine which repair procedure (output) to engage, if any.

Distributed Transaction Management. Distributed
transactions are groups of updates to the storage system
that are guaranteed to be atomic with respect to fail-
ures. Transactions have now been recognized as a neces-
sary component of a generic storage solution at scale [3].
On the other hand, traditional RDMS-style transactions
are known not to scale. To address this problem, Mero sep-
arates transaction control proper from other issues, usually
linked with it, such as concurrency control and isolation.
The resulting transaction mechanism is scalable and effi-
cient.

Layouts. A layout determines how a storage entity
(an object, a key-value index, a container, etc.) is mapped
to the available storage hardware and tiers. Layouts deter-
mine performance and fault-tolerant properties of storage
entities. Each object has its own layout as described by the
user of Mero. They determine how an object is distributed
across multiple tiers of a deep storage hierarchy. Different

types of layouts are possible. For example RAID layouts
with different combinations of data and parity, compressed
layouts, mirrored layouts, etc. Different portions of objects
mapped to different tiers can have their own layout based
on the property of the tier onto which they are mapped.

Function Shipping. A system features horizontal
scalability if its performance increases linearly (or quasi-
linearly) with the number of components. An ideal stor-
age cluster should scale horizontally: capacity and band-
width should increase linearly with the number of nodes.
However, the network may not scale proportionally, as is
predicted for Exascale systems. Many computations can
process data locally. That is, processing a portion of sys-
tem input can be done independently of processing the
rest of the input. In this case, it is not optimal to fetch
raw data from a storage cluster into a compute cluster and
process it there. In an Exascale situation, a large trans-
fer overhead is predicted. Thus, computations should be
distributed throughout the storage cluster and performed
in place. Instead of moving the data to the computation,
the computation moves to the data. The function-shipping
component will provide the ability to run data-centric, dis-
tributed computations directly on the storage nodes where
the data resides. Additionally, the computations offloaded
to the storage cluster are designed to be resilient to errors.
WEell defined functions are offloaded from the use cases to
storage through the API and invoked through simple Re-
mote Procedure Call (RPC) mechanisms.

Advanced Views. Considering the volume of objects
in a distributed storage system at Exascale, it is quite
wasteful to have different copies of objects to map to dif-
ferent types of data formats needed by different compo-
nents of the application workflow, in case the same data is
read. It is indeed quite desirable to have different windows
into the same raw objects based on the applications using
it. This is possible by manipulation of metadata associ-
ated with objects without copying the raw objects. This is
termed as Advanced Views and Schemas which we overlay
on top of the Mero core. This will make it possible to have
various views such as S3 view, HDF5 View, POSIX view
etc on top of the same set of objects.

3.2.2. Clovis

Clovis is the second SAGE software stack layer, sitting
on top of Mero. Clovis is a rich, transactional storage API
that can be used directly by user applications and can also
be layered with traditional interfaces such as POSIX and
RESTful APIs, much as libRados [2§] is the interface upon
which the CephFS (POSIX), RadosGW (S3), and RBD
(block device) [29] interfaces are built. The Clovis I/0
interface provides functions related to objects and indices
for storing and retrieving data. Objects store traditional
data. Indices store special data such as key-value pairs.
Clovis object is an array of blocks. Blocks are of a power
of two size bytes. This keeps the interface simpler and
allows for efficient checks and translations between byte



offsets and block indices El They are of the same size for
a particular object. The block size is selected when an
object is created for the first time. Objects can be read
from and written to at block level granularity. Objects can
be deleted at the end of their lifetime.

In the SAGE platform, Clovis consists of an access in-
terface that provides access to objects (including through
various gateway stacks), to specify containers and layouts
for objects, shipped functions, and, transactional seman-
tics. Clovis contains a management interface that accesses
telemetry records called Analysis and Diagnostics Data
Base (ADDB) records on system performance that can be
fed into external system data analysis tools. The Clovis
management interface also contains an extension interface
that will be used to extend the features and functionalities
of Mero.

Clovis Access Interface. Clovis consists of an access
interface that provides access to objects (including through
various gateway stacks), to specify containers and layouts
for objects, and, transactional semantics.

A Clovis index is a key-value store. An index stores
records in some order. Records are key-value pairs with
the constraint that keys are unique within an index. Clo-
vis provides GET, PUT, DEL and NEXT operations on in-
dices. The GET operation returns matching records from
an index for a given set of keys. The PUT operation
writes/rewrites a given set of records. The DEL operation
deletes all matching records of an index for a given set of
keys. The NEXT operation returns records corresponding
to the set of next keys for a given set of keys.

Clovis Management Interface. Clovis contains a
management interface that ADBB telemetry records on
system performance that can be fed into external system
data analysis tools. Clovis also contains an extension inter-
face, as part of the management interface, that will be used
to extend the features and functionalities of Mero. This
interface is known as FDMI. Additional data management
plug-ins can easily be built on top of the core through
FDMI. Hierarchical storage management and information
lifecycle management, file system integrity checking, data
indexing, data compression are some examples of third-
party plug-ins utilizing the API.

3.2.3. Tools

A following are a set of tools for I/O profiling and op-
timized data movement across different SAGE platform
tiers at the top of the SAGE software stack.

Data Analytics Tools. Apache Flink, the data ana-
lytics tool employed in the SAGE project, will work on top
of Clovis access interface through Flink connectors for Clo-
vis. Using Flink enables the deployment of data analytics
jobs on top of Mero.

Parallel File System Access. Parallel file system
access is the traditional method of accessing storage in

LAll block sizes occurring in practice (byte addressable storage,
processor cachelines, block devices block sizes, etc.) are powers of 2

HPC. Many of the SAGE use cases will need the support
of POSIX compliant storage access. This access is pro-
vided through the pNFS gateway built on top of Clovis.
However, pNFS will need some POSIX semantics (to ab-
stract namespaces on top of Mero objects) to be developed
by leveraging Mero’s KVS. This abstraction is provided in
SAGE.

HSM and Data Integrity. HSM is used to control
the movement of data in the SAGE hierarchies based on
data usage. Advanced integrity checking overcomes some
of the drawbacks of well known and widely used file system
consistency checking schemes.

ARM Forge. ADDB telemetry records from the Clo-
vis management interface are directly fed to ARM Forge
performance report tools that reports overall system per-
formance for SAGE.

RTHMS. We designed and developed a tool, called
RTHMS [12], that analyzes parallel applications and pro-
vides recommendations to the programmer about the data
placement of memory objects on heterogeneous memory
systems. QOur tool only requires the application binary
and the characteristics of each memory technology (e.g.,
memory latency and bandwidth) available in the system.

3.2.4. High-Level HPC Interfaces

At the top of the software stack, we further develop
widely-used HPC legacy APIs, such as MPI and HDF5, to
exploit the SAGE architecture.

PGAS I/0. The goal of the Partitioned Global Ad-
dress Space (PGAS) programming model is to provide pro-
cesses with a global view of the memory and storage space
during the execution of a parallel application. This is sim-
ilar to what a Shared Memory model provides in a mul-
tithreaded local environment. In the PGAS approach, re-
mote processes from different nodes can easily collaborate
accessing memory addresses through load / store opera-
tions that do not necessarily belong to their own physical
memory space. In SAGE, we propose an extension to the
MPI one-sided communication model to support window
allocations in storage: MPI storage windows [30]. Our ob-
jective is to define a seamless extension to MPI to support
current and future storage technologies without changing
the MPI standard, allowing to target either files (i.e., for
local and remote storage through a parallel file system)
or alternatively address block devices directly (i.e., as in
DRAM). We propose a novel use of MPI windows, a part of
the MPI process memory that is exposed to other MPI re-
mote processes, to simplify the programming interface and
to support high-performance parallel I/O without requir-
ing the use of MPI I/O. Files on storage devices appear to
users as MPI windows (MPI storage windows) and seam-
lessly accessed through familiar PUT and GET operations.
Details about the semantics of operations on MPI storage
windows and the implementation are provided in Ref. [30].

In Section 4 we present the initial performance results
of using MPI storage windows.



MPI Streams for Post-Processing and Parallel
I/0. While PGAS I/0 library addresses the challenge of
heterogenous storage and memory, streams can be used to
support function-shipping for post-processing and highly
scalable parallel I/O. Streams are a continuous sequence of
fine-grained data structures that move from a set of pro-
cesses, called data producers, to another set of processes,
called data consumers. These fine-grained data structures
are often small in size and in a uniform format, called
a stream element. A set of computations, such as post-
processing and I/O operations, can be attached to a data
stream. Stream elements in a stream are processed online
such that they are discarded as soon as they are consumed
by the attached computation.

In particular, our work in SAGE focuses on parallel

streams, where data producers and consumers are distributed

among processes that require communication to move data.
To achieve this, we have developed a stream library, called
MPIStream, to support post-processing and parallel I/O
operations on MPI consumer processes [3I, [16]. More
details about MPI streams operation semantics and MP-
IStream implementation are provided in Ref. [32]. In Sec-
tion 4| we present the results of using MPI streams for
post-processing and parallel I/O operations.

HDF5. Typically, data formats in HPC provide their
own libraries to describe data structures and their relations
(including I/O semantics). The HDF5 data format needs
to be supported in SAGE, and is layered directly on top
of Clovis. The HDF5 will use the Virtual Object Layer
Infrastructure within HDF5 (used to interface HDF5 with
various object formats), to interface with Clovis.

4. Results

We are starting to quantify the benefits of the individ-
ual features sets of the SAGE stack in the ongoing process
of providing a holistic picture of the benefits of the SAGE
architecture for Exascale. On that front, we present the
performance results of two components of the high-level
HPC interfaces for the SAGE platform: the PGAS I/0 us-
ing MPI storage windows [30] and MPI streams [32], 31, [16]
for post-processing and efficient parallell/O operations, ex-
ploiting the SAGE architecture. This aims to provide in-
troductory results for SAGE stack components with re-
sults for other components targeted for future works.

J.1. PGAS I/0

In order to understand the potential performance con-
straints that the storage allocations introduce into the MPI
one-sided communication model, we have carried out ex-
periments with three benchmarks and applications [30]:

¢ STREAM is a popular micro-benchmark to mea-
sure the sustainable memory bandwidth of a sys-
tem [33]. As files are mapped into the MPI window,
STREAM is a convenient benchmark to measure the
access bandwidth to the MPI storage window and

compare it with the bandwidth achieved when using
MPI windows in memory. For this reason, we extend
the MPI version of STREAM to support memory
windows for each array allocation and instruct MPI
to allocate the MPI windows on storage.

e Distributed Hash Table (DHT) mimics SAGE
data-analytics applications that have random access
in distributed data structures. The source code is

based on the implementation of a DHT presented in
Ref. [34].

e HACC is a physics particle-based code, simulating
the trajectories of trillions of particles. For our tests,
we use the HACC I/O kernel to mimic the check-

pointing and restart functionalities in the SAGE iPIC3D

application [I§]. We extend the kernel to perform
check-pointing and restart using MPI storage win-
dows to compare with the existing MPI I/O imple-
mentation.

As the SAGE system has been only recently installed,
we tested the SAGE software components on other work-
stations and supercomputers available within the SAGE
consortium. To carry out different experiments and ob-
tain preliminary results about the SAGE software stack,
we use two testbeds, specified as follows:

e Blackdog is a workstation with eight-core Xeon E5-
2609v2 processor running at 2.5GHz. The worksta-
tion is equipped with a total of 72GB DRAM. The
storage consists of two 4TB HDD (WDC WD4000F9YZ
/ non-RAID) and a 250GB SSD (Samsung 850 EVO).
The OS is Ubuntu Server 16.04 with Kernel 4.4.0-
62-generic. Compilation uses gcc v5.4.0 and MPICH
v3.2.

e Tegner is a supercomputer at KTH. We use up to
six compute nodes that are equipped with Haswell
E5-2690v3 processor running at 2.6GHz. Each node
has two sockets with 12 cores and a total of 512GB
DRAM. The storage employs a Lustre parallel file
system. The OS is CentOS v7.3.1611 with Ker-
nel 3.10.0- 514.6.1.el7.x86_64. Compilation uses gcc
v6.2.0 and Intel MPI v5.1.3.

Figures [3(a) and [3[c) present the bandwidth of the
modified STREAM benchmark on Blackdog and Tegner
respectively with MPI windows and MPI storage windows.
The x-axis shows the problem size in millions of elements
per array, while the y-axis presents the measured band-
width. Figure b) shows the asymmetric bandwidth for
read / write on Tegner, using Lustre as the underlying
parallel file system and the copy kernel of STREAM.

Figure[3|(a) shows that only approximately a 10% degra-
dation is observed on Blackdog for the largest case of 1000
million elements per array. Analyzing Figure (C), we ob-
serve that the MPI storage window performance on Tegner
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Figure 3: STREAM benchmark performance using MPI windows on
storage and DRAM on two different systems.

degrades the bandwidth by 90% compared to the MPI win-
dow allocation on memory. In Figure b) we can observe
that read operations can reach as high as 12,308MB/s and
write operations only reach 1,374MB/s. This explains why
the STREAM benchmark, which constantly enforces write
operations between the three arrays, performed consider-
ably worse and did not take advantage of the read band-
width.

The second application we test the MPI storage win-
dows is the Distributed Hash Table (DHT). In the DHT
application, each MPI process handles a part of the DHT,
named Local Volume. These volumes have multiple buck-
ets to store elements individually. The processes also main-
tain an overflow heap to store elements in case of collisions.
For instance, for 8 processes and a conflict overflow of 4
per element, 100 million elements per local volume means
a capacity of 500 million elements per MPI process and
a global DHT size of 4000 million elements (800 million
excluding the overflow heap). The local volume and the
overflow heap are allocated as MPI windows on each pro-
cess, so that updates to the DHT are handled using MPI
one-sided operations. In this way, each MPI process can
put or get values and resolve conflicts asynchronously on
any of the exposed local volumes.

Figures [da) and [4(b) present the execution time of
the DHT on Blackdog and Tegner, respectively, using MPI
windows and MPI storage windows. The x-axis represents
the Local Volume per process in millions of elements, while
the y-axis shows the average execution time. The execu-
tion on Blackdog is using eight MPI processes, while the
execution on Tegner is using 96 MPI processes (4 nodes).

The DHT results on Blackdog in Figure a) demon-
strate that the overall overhead of using MPI storage win-
dows with conventional hard disks is 34% compared to the
memory-based approach. However, one of the advantages
that the SAGE system will feature is its multi-tier stor-
age capabilities, containing Non-Volatile RAM (NVRAM)
together with other storage technologies. Consequently,
we evaluated the performance once again by using a faster
storage device, such as a solid-state drive (SSD). The per-
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Figure 4: DHT application performance using MPI windows on stor-
age and DRAM on two different systems shows that performance
penalty of using storage instead of memory is relatively small.
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Figure 5: Execution time of the HACC I/O kernel, mimicking
iPIC3D checkpointing / restart, running on Blackdog and Tegner
using MPI I/O and MPI storage windows. MPI storage windows
provide better scalability when compared to MPI I/O on a larger
number of processes.

formance clearly improves in comparison by decreasing the
overhead to approximately 20% on average. In the case of
Tegner, Figure Ekb), using MPI storage windows barely
affects the performance with only 2% degradation on av-
erage when compared to MPI memory windows.

Finally, we evaluate the MPI storage window perfor-
mance with HACC I/O kernel (strong scaling). We use
100 million particles in all the tests, while increasing the
number of processes in use. We ensure synchronization
both during check-pointing and restart for fair compari-
son with MPI I/O.

Figure |5| shows the average execution time on Black-
dog and Tegner when varying the number of processes.
The results show that MPI storage windows provide about
32% improvement on average on Tegner when compared
to the MPI I/O implementation when the process count
increases. On the other hand, the performance of the two
approaches are similar on Blackdog, with MPI I/O per-
forming slightly better (4% on average). While the perfor-
mance difference between the two approaches is relatively
small, this result indicates that the MPI storage windows
provide better scalability compared to MPII/O on a larger
number of processes.

In SAGE, we showed that MPI storage windows pro-
vide a high-performance I/O mechanism. The bandwidth
to MPI storage windows is only a fraction smaller than



Figure 6: MPI streams allows iPIC3D to offload particle visualization
and parallel I/O to a smaller number of MPI processes and continue
with the simulation. As next step in SAGE, Clovis function-shipping
capabilities can be used for post-processing on storage.

the bandwidth to MPI windows in memory. Parallel I/O
with MPI storage windows is also faster than traditional
parallel I/O solutions, such as MPI I/O, when the num-
ber of processes is large. High-Performance parallel I/O
is achieved by the use of memory-mapped file I/O within
the MPI storage windows. In fact, the OS page cache and
buffering of the parallel file system act as automatic caches
for read and write operations on storage: in the same way
that programmers do not necessarily handle explicit data
movement in the processor caches, here programmers do
not need to handle virtual memory management or buffer-
ing on the file system, i.e., the OS and underlying file
systems provide this functionality.

4.2. MPI Streams for Post-processing and Optimized 1/0

In SAGE, we developed MPI streams to support of-
floading of post-processing and parallel I/O to a small
number of processes to enable high-performance I/0. As
future tasks, we plan to use Clovis function shipping capa-
bilities to perform operations on streams directly on stor-
age.

To test the performance of MPI Streams for I/0, we
use one of the SAGE applications, iPIC3D [18]. The cur-
rent production version of the iPIC3D code uses the MPI
collective I/O for saving snapshots of relevant quantities,
such particle positions and velocities, to disk. In this use
case, we use MPI Streams to offload post-processing to
separate a program that performs I/O and visualization
at runtime. In this way, MPI processes that carry out the
simulation are isolated from the frequent and expensive
I/O operations [31]. We use the MPI Streams library to
decouple the processes from I/O operations by streaming
out the particle data to the I/O program so that simu-
lations can proceed without carrying out I/O operation.
Concurrently, the I/O and visualization program contin-
ues processing the received particle data. A visualization
of high energy particles trajectories with Paraview appli-
cation is presented in Figure [6]

In this case, particle data is streamed out to the I/O
and Paraview program at a frequency as high as each time
step. Thus, no data is lost for these particles of interest
and their motion can be tracked accurately. In this case,
the iPIC3D code is the data producer and the I/O and
post-processing code is the data consumer. The stream ele-
ment is the basic unit of the communication between these
two programs. It is defined as the structure of a single
particle that consist of eight scalar values: particle posi-
tion (x,y,z), particle velocity (u,v,w), particle charge q and
an identifier ID. For tracking high energy particles, only
those particles with energy exceeding certain thresholds
are streamed out. It is unpredictable when and which par-
ticles will reach high energies. Thus, a particle is streamed
out during particle mover, where the location and velocity
of each particle is calculated. Once a particle reaches high
energies, it is continuously tracked in the remaining of the
simulation. The I/O and visualization program continues
receiving particle streams from the simulation at runtime
and processing them to prepare data in file formats, such
as VTK, that can be visualized on-the-fly by the Paraview
application. The I/O and visualization program can flush
data to the file system at a user-defined frequency. With
sufficiently high frequency, the user can visualize the real-
time motion of particles during simulation.

We perform the performance tests of MPI streams for
I/0 on the KTH Beskow supercomputer. Beskow is a Cray
XC40 supercomputer with Intel Haswell processors and
Cray Aries interconnect network with Dragonfly topology.
The supercomputer has a total of 1,676 compute nodes
of 32 cores divided between two sockets. The operating
system is Cray Linux, and the applications are compiled
with the Cray C compiler version 5.2.40 with optimization
flag -O3 and the Cray MPICH2 library version 7.0.4.

Offloading I/O operations to a smaller number of I/O
processes can reduce the communication time. The per-
formance gain from the streaming model increases as the
scale of the system increases. This is visible from Figure[7]
that presents the scaling test results comparing the particle
visualization using MPT collective I/O (in grey bars) and
the streaming model for decoupling I/O from simulation
(in white bars). The streaming I/O uses one visualization
process for every 15 simulation process.

The simulation runs for 100 time steps and the total
execution time is shown in y-axis. The improvement is cal-
culated by dividing the execution time in MPI collective
I/O over the execution time in the streaming model. The
improvement results are shown in the solid line against the
secondary y-axis. On small number of processes, the two
approaches show comparable performance. Starting from
256 processes, the streaming model demonstrates a steady
improvement that continues increasing to 3.6X speedup
on 8,192 processes. The observed results are in line with
the fact that I/O operations on supercomputers are often
a major performance bottleneck and shows that perfor-
mance gain by using MPIStream, developed in SAGE, for
I/O can be considerable. Additional details about MPI
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Figure 7: MPI streams allows iPIC3D to offload parallel I/O to a
small number of MPI processes achieving considerable performance
gain. Data can be streamed to Clovis clients to perform I/O on the
object storage.

stream performance for optimizing parallel I/O and post-
processing are reported in Refs. [31] [16].

As future tasks, we plan to stream data to Clovis clients
and perform I/O on the object storage.

5. Related Work

To the best of our knowledge SAGE is the first HPC-
enabled storage system to implement new NVRAM tiers,
Flash and disk drive tiers as part of a single unified storage
system. The SAGE Architecture progress the state of the
art from Blue Gene Active Storage [35] and Dash [36],
which use flash for data staging. SAGE also progress the
state of the art from Burst Buffer technologies as discussed
earlier.

We note that Data Elevator [37] addresses some specific
aspects of SAGE (primarily HSM) of moving data trans-
parently between multiple tiers in a hierarchical storage
system.

SAGE highly simplifies storage compared to what was
developed in the FastForward Project [3] and develops a
solution for deep I/0O hierarchies, including NVRAM tech-
nologies. Further, the FastForward solution is evolution-
ary as it tries to make use of an existing storage solution,
namely, Lustre [38] used for the last 20 years or so, that
was really designed for the previous era, when use cases
and architectural assumptions were different. SAGE and
Mero are the product of a complete redesign in consider-
ation of the new requirements arising out of the Extreme
scale computing community.

Mero, the object store in SAGE, extends the state
of the art in existing object storage software, Ceph [39)
and Open Stack Swift [40] by building Exascale compo-
nents required for extreme scale computing. Fundamen-
tally Ceph and Openstack swift are designed for cloud
storage, whereas Mero is built to meet the needs of the
extreme scale computing community.

6. Conclusions and Future Work

We aimed at designing and implementing an I/0O sys-
tem capable of supporting I/O workloads of Exascale su-

percomputers. The SAGE platform, recently installed at
Julich Computing center, supports a multi-tiered I/O hi-
erarchy and associated intelligent management software,
to provide a demonstrable path towards Exascale. The
SAGE software stack consists of three main software lay-
ers: the Seagate Mero object-storage, the Clovis API with
tools and high-level interfaces, such as MPI, on the top of
the software stack. We presented the performance results
of the first implementation of high level HPC interfaces
for SAGE. The current work focuses on porting the higher
level interfaces and tools to the SAGE system.

Part of ongoing work is the focus on the performance
characterization of various new NVRAM device technolo-
gies appearing in the time frame of the SAGE project.
This is also looking at lower level software and Operating
System(OS) infrastructure requirements to exploit these
new devices types, below Mero in the SAGE stack. We
clearly recognize that various NVRAM technologies have
their own performance characteristics and limitations. New
NVRAM technologies can be part of the SAGE hardware
tiers based on where they ultimately are on the perfor-
mance and capacity curve. The SAGE stack and Mero
indeed is designed to be agnostic of storage device types
as long as adaptations are in place within the OS.

The next steps will be to quantify the benefits of the
various features of the SAGE stack on the SAGE proto-
type system currently installed at Juelich Supercomputing
Center, with focus on providing results for the remain-
ing SAGE components and the SAGE architecture as a
whole. As a part of this external organisations outside of
the SAGE consortium ( eg: from Climate and Weather,
Astronomy, etc) will soon be granted access to study how
their codes and worlflows can exploit the features of the
SAGE platform. We will then look at extrapolation stud-
ies of the benefits of the various SAGE features at Exascale
through analytical and simulation models. These will be
discussed separately. Porting of the SAGE stack across
other sites and extensions of the SAGE prototype is also
planned. We are targeting SAGE work to be a part of Eu-
ropean Extreme Scale Demonstrators [41] which will be
pre-exascale prototypes.
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