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ABSTRACT

In this paper, anomalous sub- and super-diffusion arising in image processing is con-
sidered and is modelled by a diffusion equation with fractional time derivative. It
might serve as a building block for the construction of various filters. The resulting
partial differential equation is discretised in space with centred differences and in
time with the explicit or implicit Euler method, respectively. A numerical investi-
gation is performed to illustrate new and interesting results. Additionally, the time
derivative of the partial differential equation describing dilation and erosion is re-
placed by a fractional time derivative and then solved numerically. Interesting new
questions arise from the presented numerical results. A short summary and outlook
conclude this article.
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1. Introduction

A large amount of methods for the processing and analysis of digital images employ
time-dependent partial differential equations. It started out with the so-called scale-
space concept introduced as early as 1959 by the works of T. Iijima [23, 24], although
his efforts remained unrecognised for decades in the western image processing com-
munity. There, Witkin [48] had been considered for a long time to be the first to take
advantage of the convolution of an image f : R2 −→ R with a Gaussian kernel estab-
lishing a semigroup structure. This approach is equivalent to solving the basic linear
diffusion equation with Laplace operator ∆, i.e.

∂u

∂t
= ∆u (1)

with initial condition u(x, y, 0) = f(x, y) and homogeneous Neumann boundary con-
ditions as Koenderink pointed out in [28]. The path-breaking work of Perona and
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Malik [35] presenting a non-linear diffusion equation, where the diffusive properties of
the equation are guided by the underlying image structure, mark the onset of image
processing with highly non-linear evolution equations (see also Weickert [46]). Aside
from these parabolic type equations derived from (1), other examples are transport
equations such as

∂u

∂t
= ‖∇u‖ and

∂u

∂t
= −‖∇u‖ (2)

with initial condition u(x, y, 0) = f(x, y) and homogeneous Neumann boundary con-
ditions, where ‖ · ‖ stands for a vector norm in R2. They mimic the process of dilation
and erosion of an image [6, 43, 44] known from mathematical morphology [31, 39] and
serve as building blocks for more higher morphological operations such as opening,
closing, gradients (internal, external, and Beucher), and morphological Laplacian. In
practice, the equations are solved approximately by specialized and elaborate numer-
ical methods to obtain a processed image u.

In this article, a different type of generalization of an evolution equation is proposed.
In the aforementioned equations a temporal derivative of fractional order α: ∂α/∂tα

with α ∈ (0, 2) instead of a temporal derivative (of order one) ∂/∂t is considered. The
question of a fractional differentiation has been raised by Leibniz (see for example [36])
making the idea almost as old as differential calculus itself. Hence, it is not a surprise
that there are many legitimate ways to define a fractional derivative. Here, we will
concentrate on a prominent approach named after Caputo [10] relying on fractional
integration, a rather straightforward extension of integration, which is then concate-
nated with a regular differentiation. Clearly, differentiation is a local operation, while
integration (fractional or not) acts globally. Therefore, fractional (Caputo-) differen-
tiation takes global information into account. This made the approach attractive for
researchers in various fields, such as classical mechanics, field theory, quantum me-
chanics, see, for example [1, 2, 21, 32], and the literature cited therein. Even in image
processing the concept of fractional derivatives has been exploited, refer to [12], [49],
and [11, 25, 50]. However, in most applications both temporal and spatial derivatives
have been “fractioned”, and very often the investigation concentrates on a specific
fraction α = 1/2, see [32] or [9]. In this article, we investigate the solutions of the
morphological equations (2) (and for the sake of completeness the diffusion equation
(1)), where the temporal derivative is replaced by a (Caputo-)fractional one with order
α.

The motivation behind the use of a fractional time derivative especially of Caputo-
type lies in its non-local structure in time. The integral appearing in its definition is
a global operator in that the whole time history of the function is involved for the
computation of the time fractional derivative. This interpolation between derivatives
makes the computation more expensive. We use the Caputo time derivative as the right
hand side in an evolution equation that governs the processing of an image which is
used as initial data.

Again, we would like to emphasise that linear diffusion arises in many different dis-
ciplines such as (a) filling holes in complex surfaces using volumetric diffusion [13],
(b) diffusion-based method for producing density-equalizing maps [18] as well as in
(c) image processing (Perona-Malik diffusion and variants), see [46] and the references
therein. The main assumption in image processing is the linearity of the diffusion
process. Hence, its solution is given by means of a so-called semi-group of kernel func-
tions. This is expressed by saying that the diffusion process has a scale-space property
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or constitutes a scale space. It is worth noting that fractional integration constitutes
a scale-space. Surprisingly, this is not true for fractional differentiation, although its
definition is based on fractional integration. This complicates the numerical treatment
but raises the expectations of the experimental results especially if we consider, as a
novelty, the time fractional non-linear eikonal equations describing the dilation and
erosion process of mathematical morphology. From a theoretical point of view, these
eikonal equations do have a semigroup-property as well, since the classical set theoretic
counterparts of dilation and erosion with respect to a fixed structuring element form
a semigroup (see [41]). For example a dilation with time 2× T of a black image with
a circular white structure in its center would lead to an extension of this structure
twice as big as for the evolution time T . However, since we have to rely on numerical
schemes this effect is overlaid by numerical dissipation causing blurring artifacts in
the final results. With our approach we are capable to produce images with either
sub-diffusion or super-diffusion which then might serve as initial images in test exam-
ples for algorithms designed for image deblurring, the “inverse” operation to blurring
caused by diffusion processes. A well-known example is the Wiener filter which aims
at the reversal of the blurring of an image induced by classical linear diffusion (see
[45] for a good overview of some recent methods).

The structure of the paper is the following. In Sec. 2, the equation describing anoma-
lous sub-diffusion is presented. Additionally, it is shown in detail how to solve this
equation numerically. Next, the process of modified dilation and erosion is described
in Sec. 3 as well as the discretisation. In Sec. 4, numerical results are reported. A short
summary and outlook conclude this article.

2. Anomalous sub-diffusion and super-diffusion

Anomalous diffusion is modelled by the partial differential equation

C∂αu

∂tα
= div(κ gradu) . (3)

Here, κ denotes either a constant or, in the most general setting, a diffusion tensor
depending on u. The left hand side of (3) is the Caputo fractional derivative defined
by

C∂αu

∂tα
=

1

Γ(m+ 1− α)

∫ t

0

u(m+1)(τ)

(t− τ)α−m
dτ ,

with m = ⌊α⌋ (see [37]), where 0 < α < 1 (modelling sub-diffusion) or 1 < α < 2
(modelling super-diffusion). Since we want to apply this process to image processing,
we restrict our attention to the two-dimensional space and assume further that κ
is a given constant. Hence, a solution u(x, t) with x = (x, y) for some 0 < t < T is
sought. To make (3) solvable for sub-diffusion, we specify the initial condition u(x, 0) =
u(0)(x), where u(0) is a given gray-value image. If super-diffusion is supposed, a second
initial condition u(1)(x) = ∂

∂tu(x, t)|t=0 has to be specified. Additionally, homogeneous
Neumann boundary conditions are imposed for both sub- and super-diffusion. Since
(3) cannot be solved analytically, it is discretised in space and in time.

The discretisation in space is straightforward using a two-dimensional grid with
grid size h = 1 in both directions; i.e. the number of grid points is M ×N (the given
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resolution of the image u(0)), the discretisation of the right hand side of (3) for interior
nodes is given by (see also [7, p. 691])

κ (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j) ,

since we used centred differences as follows

∂2u

∂x2

∣

∣

∣

∣

x=(xi,yj)

≈ ui+1,j − 2ui,j + ui−1,j
∂2u

∂y2

∣

∣

∣

∣

x=(xi,yj)

≈ ui+1,j − 2ui,j + ui−1,j .

The discretisation for the boundary points looks slightly different due to the given
homogeneous Neumann boundary conditions (as discussed later). More elaborate is
the discretisation in time for the left hand side of (3). For a given P ∈ N, we use a
equidistant grid of the form tk = k·∆t, k = 0, . . . , P with grid size ∆t = T/P . The
Caputo fractional derivative of order α is approximated by

C∂αu

∂tα

∣

∣

∣

∣

t=tk+1

x=(xi,yj)

≈

k+1
∑

ℓ=0

c
(α)
ℓ uk+1−ℓ

i,j −

m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj) , (4)

where m = ⌊α⌋, the c
(α)
ℓ define the Grünwald-Letnikov coefficients and u(n)(xi, yj) are

the initial conditions (see also [10, 37]). The Grünwald-Letnikov coefficients can be
computed recursively by

c
(α)
0 = (∆t)−α , c

(α)
k =

(

1−
1 + α

k

)

c
(α)
k−1

with k ∈ N (see for example [37, p. 48]). In sum, the explicit time discretisation (see
for example [7, p. 701]) of the fractional diffusion equation is given by

k+1
∑

ℓ=0

c
(α)
ℓ uk+1−ℓ

i,j −

m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj)

= κ
(

uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − 4uki,j

)

and the implicit discretisation (see for example [7, p. 703]) is given by

k+1
∑

ℓ=0

c
(α)
ℓ uk+1−ℓ

i,j −

m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj)

= κ
(

uk+1
i+1,j + uk+1

i−1,j + uk+1
i,j+1 + uk+1

i,j−1 − 4uk+1
i,j

)

,

respectively. The straightforward approach to obtain an easy to implement numerical
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scheme is to rearrange the previous two equations to

uk+1
i,j = (∆t)α

(

κ

(

uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − (4−
α(∆t)−α

κ
)uki,j

)

−

k+1
∑

ℓ=2

c
(α)
ℓ uk+1−ℓ

i,j +

m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj)

)

and

− α(∆t)−αuki,j +

k+1
∑

ℓ=2

c
(α)
ℓ uk+1−ℓ

i,j −

m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj)

= κ

(

uk+1
i+1,j + uk+1

i−1,j + uk+1
i,j+1 + uk+1

i,j−1 − (4 +
(∆t)−α

κ
)uk+1

i,j

)

,

respectively. Using a lexicographic ordering for uki,j and uk+1
i,j and putting them into

the vectors uk and uk+1 of size M ·N yields the following explicit and implicit iteration
scheme written abstractly as

uk+1 = Auk − bex , k = 0, . . . , P − 1

with A = αIMN + (∆t)ακ ·D2 and

B uk+1 = bim , k = 0, . . . , P − 1

with B = −(∆t)−αIMN +κ ·D2. IMN denotes the identity matrix of size M ·N×M ·N
andD2 is the discrete 2D-Laplacian including the Neumann boundary conditions given
by (see [42])

D2 = DM
1 ⊗ IN + IM ⊗DN

1

with the tridiagonal matrix DK
1 of size K ×K given by

DK
1 =



















−1 1
1 −2 1

1
. . .

. . .
. . .

. . .

1 −2 1
1 −1



















.

Here, the operation ⊗ denotes the Kronecker product (see [22]). The vectors bex and
bim are given by

bex = (∆t)α

(

k+1
∑

ℓ=2

c
(α)
ℓ uk+1−ℓ −

m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj)

)

,
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and

bim = −α(∆t)−αuk +

(

k+1
∑

ℓ=2

c
(α)
ℓ uk+1−ℓ −

m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj)

)

.

3. Dilation and erosion from continuous scale morphology

The equations

C∂αu

∂tα
= ±

√

(

∂u

∂x

)2

+

(

∂u

∂y

)2

(5)

describe the process of modified dilation and erosion, respectively. Again a given image
u(0) is used as initial condition and homogeneous boundary conditions are prescribed.
For 1 < α < 2 we have to specify a second initial condition u(1). The approximation
of the Caputo fractional derivative is used for discretisation in time (see (4)) and in
space the first-order finite difference method by Rouy-Tourin [38] is used with h = 1
in both directions.

Note that the method of our choice to solve the morphological transport equations is
the Rouy-Tourin scheme (RT) [38] mainly due to its simplicity and stability. As a first
order numerical scheme it displays results very similar to the Osher-Sethian scheme
(OS-I) [33, 34]. Only slightly better, but more elaborate, is the second order variant
of Osher-Sethian scheme (OS-II) [33, 40]. The flux-corrected-transport scheme (FCT)
of Breuss and Weickert [5], however, performs very well with only a small amount
of numerical dissipation. FCT utilises a standard scheme, RT, OS-I or OS-II, as an
initial step, whose dissipative effects are then minimized in a second, rather elaborate
corrector step.

Precisely, we obtain

∂u

∂x

∣

∣

∣

∣

x=(xi,yj)

≈ max (−ui,j + ui−1,j , ui+1,j − ui,j , 0)

and

∂u

∂y

∣

∣

∣

∣

x=(xi,yj)

≈ max (−ui,j + ui,j−1, ui,j+1 − ui,j , 0) .

Accordingly, the spatial discretisation of the right hand side of (5) is given by

{

max (−ui,j + ui−1,j , ui+1,j − ui,j , 0)
2 +max (−ui,j + ui,j−1, ui,j+1 − ui,j , 0)

2
}1/2

and altogether after choosing the time tk for the right hand side and rearranging terms
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yields the following explicit method for (5)

uk+1
i,j =αuki,j − (∆t)α

k+1
∑

ℓ=2

c
(α)
ℓ uk+1−ℓ

i,j + (∆t)α
m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj)

±(∆t)α
{

max
(

−uki,j + uki−1,j , u
k
i+1,j − uki,j , 0

)2

+ max
(

−uki,j + uki,j−1, u
k
i,j+1 − uki,j , 0

)2
}1/2

As before, we obtain an iterative scheme of the form

uk+1 = αuk + (∆t)αbdt ± (∆t)α
√

b2
dx + b2

dy , k = 0, . . . , P − 1 ,

where

bdt = −

k+1
∑

l=2

c
(α)
l uk+1−l +

m
∑

n=0

(tk+1)
n−α

Γ(n− α+ 1)
u(n)(xi, yj)

and the entries of bdx are given by

max
(

−uki,j + uki−1,j , u
k
i+1,j − uki,j , 0

)

and analogously bdy, where we have taken the homogeneous Neumann boundary con-
ditions into account by mirroring the boundary values.

4. Numerical results

In this section, various numerical results are presented. First, we illustrate the stability
regions for the explicit and implicit Euler method for different parameters of α. Then,
it is shown that we are able to obtain first order accuracy using homogeneous initial
conditions. In contrast to that the convergence rate depends on the parameter α for
inhomogeneous initial conditions. The next subsection is devoted to numerical results
for anomalous sub-diffusion followed by results for modified dilation, erosion, opening,
and closing for 0 < α ≤ 1. Additionally, a comparison of the results of the previous two
subsections with the case of α = 1 is provided. Finally, results for super-diffusion and
modified dilation, erosion, opening, and closing for 1 < α < 2 are given. All numerical
results are obtained by using Matlab R2015a.

4.1. Stability

It is well-known that the stability regions with respect to λ for the explicit and implicit
Euler method applied to the linear test problem

C∂αu(t)

∂tα
= λu(t) , u(0) = u0 , λ ∈ C , 0 < α ≤ 1 (6)
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and an additional initial condition of the form u′(0) = u1 for 1 < α < 2 are given by

C\ {(1− z)α/z : |z| ≤ 1} and C\ {(1− z)α : |z| ≤ 1}

(see for example [15, p. 571 & 572], [17, Figs. 2 & 3] and [29, 30] for the original work).
In Figs. 1 and 2 we show the region of stability with color gray for the explicit and
implicit Euler method for the parameters α = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, respectively
(compare also with [15, Fig. 1], [16, Fig. 1], and [17, Figs. 2 & 3]).
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Figure 1. Stability regions for the explicit Euler method using the parameters α = 0.4, α = 0.6, and α = 0.8
(first row) and α = 1.0, α = 1.2, and α = 1.4 (second row).
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Figure 2. Stability regions for the implicit Euler method using the parameters α = 0.4, α = 0.6, and α = 0.8
(first row) and α = 1.0, α = 1.2, and α = 1.4 (second row).

Several conclusions can be drawn from these two figures. First, it is easy to see that
the interval of stability for real λ for the explicit Euler method is smaller for 0 < α < 1
and larger for 1 < α < 2 compared to the case α = 1. The interval of stability is given
by (−2α, 0). Second, the implicit Euler method is A-stable (see [19, Def. 2.1 on p. 268]
for the definition) for 0 < α ≤ 1 whereas we loose this property for 1 < α < 2. Of

8



course, one could now investigate A(θ) stability (see [19, Def. 1.4 on p. 264] for the
definition), where θ ≤ π/2 will depend on the parameter α. The next finding is both
interesting and surprising, since we obtain integer values for the θ values. Precisely,
we get the θ angles (in degrees ◦) 90, 81, 72, 63, 54, 45, 36, 27, 18, and 9 for the
parameters α = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9, respectively. Hence, it
appears to be that θ is given by (2− α)· 90◦ for 1 ≤ α < 2 (the proof remains open).

4.2. Convergence order

It is also known that the discretization of the Caputo derivative as done above is
first-order accurate both for the explicit and implicit Euler method independent of
the parameter α provided that the initial condition is homogeneous (see [47, p. 109]).
We can easily show this numerically by solving the fractional differential equation

C∂αu(t)

∂tα
= t2 , u(0) = 0 , 0 ≤ t ≤ 1, 0 < α ≤ 1

with exact solution

u(t) =
Γ(3 + α)

Γ(3)
t2+α .

which is constructed by calculating the Caputo fractional derivative of the power
function t2+α. Note that for 1 < α < 2 we can use the same test since the second
initial condition u′(0) = 0 is satisfied as well. In Table 1 we show the absolute error
E∆t = |u(1) − ũ∆t(1)|, where ũ∆t(1) denotes the approximation of u at time t = 1,
and the estimated order of convergence (EOC), which is given by

EOC = log(E∆t/E∆t/2)/ log(2) ,

for the parameter α = 0.4, 0.8, 1.0, and 1.2 using the explicit Euler method.

α = 0.4 α = 0.8 α = 1.0 α = 1.2
∆t E∆t EOC E∆t EOC E∆t EOC E∆t EOC
1/10 0.1220 0.0685 0.0483 0.0324
1/20 0.0627 0.96 0.0350 0.97 0.0246 0.98 0.0164 0.99
1/40 0.0318 0.98 0.0177 0.98 0.0124 0.99 0.0082 1.00
1/80 0.0160 0.99 0.0089 0.99 0.0062 0.99 0.0041 1.00
1/160 0.0080 1.00 0.0045 1.00 0.0031 1.00 0.0021 1.00
1/320 0.0040 1.00 0.0022 1.00 0.0016 1.00 0.0010 1.00
1/640 0.0020 1.00 0.0011 1.00 0.0008 1.00 0.0005 1.00

Table 1. Estimated order of convergence for the explicit Euler method using the parameters α = 0.4, 0.8, 1.0,
and 1.2.

As we can observe in Table 1, we obtain first order accuracy for the explicit Euler
method. The same holds true for the implicit Euler method as shown in Table 2, where
we use the same parameters and initial conditions as before.

Furthermore, the errors are slightly better for the implicit Euler method for 0 <
α ≤ 1. The estimated order of convergence is linear and also slightly better for the
implicit Euler method.
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α = 0.4 α = 0.8 α = 1.0 α = 1.2
∆t E∆t EOC E∆t EOC E∆t EOC E∆t EOC
1/10 0.0323 0.0487 0.0517 0.0519
1/20 0.0161 1.00 0.0241 1.01 0.0254 1.02 0.0253 1.03
1/40 0.0081 1.00 0.0120 1.01 0.0126 1.01 0.0125 1.02
1/80 0.0040 1.00 0.0060 1.00 0.0063 1.00 0.0062 1.01
1/160 0.0020 1.00 0.0030 1.00 0.0031 1.00 0.0031 1.00
1/320 0.0010 1.00 0.0015 1.00 0.0016 1.00 0.0015 1.00
1/640 0.0005 1.00 0.0007 1.00 0.0008 1.00 0.0008 1.00

Table 2. Estimated order of convergence for the implicit Euler method using the parameters α = 0.4, 0.8, 1.0,
and 1.2.

It should be noted that in general we do not have first order convergence for the
explicit and implicit Euler method provided non-homogeneous initial conditions are
given. Then, the order of convergence will depend on the parameter α (see the discus-
sion on page 109 in [47]). Interestingly, we encounter the same phenomenon if we use
the simple fractional differential equation (6) with exact solution u(t) = Eα(λt

α)u0.
Here, Eα(z) denotes the Mittag-Leffler function with 0 < α < 1 and z ∈ C (see for
example [14, Section 18.1]). Using for example u0 = 1, α = 1/2 and λ = −0.3 with
the same ∆t’s as used in Tables 1 and 2, we obtain the estimated order of convergence
0.48, 0.50, 0.50, 0.51, 0.51, 0.50 for the explicit and 0.57, 0.56, 0.55, 0.54, 0.53, 0.52 for
the implicit Euler method, respectively. This clearly shows the dependence on α for
the convergence rate. Of course, for a linear ODE it is always possible to use a transfor-
mation to obtain homogeneous initial conditions and then use the first order accurate
solver. For the previous example, we can use the exact solution v(t) = Eα(λt

α) − 1
which satisfies

C∂αv(t)

∂tα
= λ(v(t) + 1) , v(0) = 0 , λ ∈ C , 0 < α ≤ 1 ,

where we used the fact that the Caputo fractional derivative of order α of a constant
is zero. Now, using α = 1/2 and λ = −0.3 we are able obtain the estimated order of
convergence 1.07, 1.04, 1.02, 1.01, 1.00, 1.00 for the explicit and 1.00, 1.00, 1.00, 1.00,
1.00, 1.00 for the implicit Euler method, respectively. This clearly indicates the linear
order of convergence. Other parameter choices yield similar results as well. This is also
the case if we use 1 < α < 2 with the second inital condition v′(0) = 0.

4.3. Anomalous sub-diffusion

Next, we present numerical results for (3) with homogeneous Neumann boundary
conditions and the gray-value image Lena of size 512 × 512 as initial condition. The
original Lena image is shown in Fig. 3 which is a well-known state-of-the-art test image
that is widely used in the image processing community.

Using κ = 1, h = 1, and ∆t = 1/200 for the implicit fractional diffusion scheme,
T = 1, 5, 10, 20, and α = 1/2, 3/4, 1 gives us the following results as shown in Fig. 4.

Using the fractional time derivative involves an integration in time which means an
averaging, that is, smoothing in time. Visually, this fractional time-induced smoothing
can hardly be distinguished from the spatial smoothing. This does not come as a
surprise since the fractional time-induced smoothing is an averaging of grey values
which have been the results of spatial averaging themselves. So in the end, one can
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Figure 3. The Lena test image.

argue that everything boils down to a spatial averaging of intensities of the initial
image. This is true, as can be seen from the effects on the presented images. However,
this overall averaging process is quite involved, and fractional differentiation provides
a splitting of this general smoothing into averaging in time and averaging in space
(usually short distance, depending on the mask used in the numerical scheme). As
a consequence the fraction α of the time derivative acts as a fine-tuning parameter
in the general smoothing induced by the diffusion. This can be seen in Fig. 4 when
comparing for example the two images generated with T = 10 and α = 1/2 and T = 5
and α = 1.

As it is well-known, linear diffusion (α = 1) preserves the mean-value of an image.
The Lena image has mean of approximately 124.1 and we obtain the same mean for
T = 10 and T = 20 using α = 1 (provided that ∆t is small enough). The same is true
for sub-diffusion.

4.4. Modified dilation, erosion, opening, and closing for 0 < α ≤ 1

Next, we focus on the modified dilation process. Using h = 1 and ∆t = 1/200 for the
fractional dilation scheme, T = 1, 5, 10, 20, and α = 1/2, 3/4, 1 gives us the following
results as shown in Fig. 5.

Besides encountering the usual effects of continuous gray-value dilation with respect
to the Euclidean norm (corresponding to a circular structuring element in set-valued
morphology), one gets the impression that a very slight additional blurring occurs. This
additional blurring is caused by the dissipative effects of the Rouy-Tourin numerical
scheme. However, as expected, the fractional derivative slows down the evolution pro-
cess the smaller α is. For the sake of completeness, we also show modified erosion for
T = 20 using α = 1/2, 3/4, 1 in Fig. 6.

Additionally, we show results for opening and closing in Fig 7 using the same pa-
rameters as before. The opening operation applied to an image consists of an erosion
followed by a dilation with identical evolution times. Likewise, a dilation concatenated
with an erosion yields the closing of an image. Since dilation and erosion are antago-
nistic processes, one can view both closing and opening as imperfect approximations
to the identity operation. And it is this imperfection that is responsible for their image
filtering powers.

We note in Fig. 7 that due to the antagonistic nature of dilation and erosion we can
regard closing and opening as approximations to the identity operation. Clearly this
approximation becomes more inaccurate the larger the evolution time is. For example,
in the case of closing, the more the erosion of an image progresses, the more image
details vanish, a loss that cannot be undone by a dilation. The same holds true for
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(a) T = 1, α = 1/2 (b) T = 1, α = 3/4 (c) T = 1, α = 1

(d) T = 5, α = 1/2 (e) T = 5, α = 3/4 (f) T = 5, α = 1

(g) T = 10, α = 1/2 (h) T = 10, α = 3/4 (i) T = 10, α = 1

(j) T = 20, α = 1/2 (k) T = 20, α = 3/4 (l) T = 20, α = 1

Figure 4. Anomalous sub-diffusion with the parameters T = 1, 5, 10, 20 and α = 1/2, 3/4, 1 for the Lena
image.

the process of opening. The results depicted in Figure 7 are in accordance with this
reasoning: only large image structures (dark ones for closing, bright ones for opening)
are preserved, while details are eliminated. Again the moderating effect of the α-value
becomes apparent.
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(a) T = 1, α = 1/2 (b) T = 1, α = 3/4 (c) T = 1, α = 1

(d) T = 5, α = 1/2 (e) T = 5, α = 3/4 (f) T = 5, α = 1

(g) T = 10, α = 1/2 (h) T = 10, α = 3/4 (i) T = 10, α = 1

(j) T = 20, α = 1/2 (k) T = 20, α = 3/4 (l) T = 20, α = 1

Figure 5. Modified dilation with the parameters T = 1, 5, 10, 20 and α = 1/2, 3/4, 1 for the Lena image.

4.5. Comparison to the case α = 1

At first, it seems reasonable to consider a scaled difference of two images to show
the effect for varying parameter α. However, in order to make the difference more
tangible, we employ a finer measure to compare results, the so called co-histogram.
The co-histogram of two images f(x, y) and g(x, y) of resolution M × N is given by
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(a) T = 20, α = 1/2 (b) T = 20, α = 3/4 (c) T = 20, α = 1

Figure 6. Modified erosion with the parameters T = 20 and α = 1/2, 3/4, 1 for the Lena image.

(a) T = 20, α = 1/2 (b) T = 20, α = 3/4 (c) T = 20, α = 1

(d) T = 20, α = 1/2 (e) T = 20, α = 3/4 (f) T = 20, α = 1

Figure 7. Modified opening (first row) and modified closing (second row) with the parameters T = 20 and

α = 1/2, 3/4, 1 for the Lena image.

all pixel value pairs (p, q), H(p, q), where H(p, q) is given by

H(p, q) =
1

MN

M
∑

y=1

N
∑

x=1

δ(f(x, y), p)δ(g(x, y), q) ,

where δ(f, p) denotes the Kronecker delta function (see [20] for more details). The
value H(p, q) represents the probability that the value of ordered image pair (f, g)
coincides with the gray-value pair (p, q) anywhere in the whole image domain. Hence,
a co-histogram comparing an image with itself is represented by a black 256 × 256-
image except that its diagonal consists of white pixels (gray-value is one). However,
for a better visualization we depict the inverted image 1 − H(p, q), see Figs. 8 and
9. Comparing identical images would lead to an inverted co-histogram which is white
(gray-value is one) except a black (gray-value is zero) diagonal. Hence, the larger the
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deviation from this “diagonality” is, the larger is the difference between the compared
images. Note that this is a global measure and it is rather difficult to infer local
information about the difference of images from their co-histogram due to the coding
of the pixel pairs.

In Fig. 8, we show six co-histograms for various sub-diffusion with the regular dif-
fusion (inverted for better visibility and scaled to the full gray-value range). The first
row uses the parameter α = 1/2 and the second row uses the parameter α = 3/4. The
first, second, and third column use the parameters T = 5, T = 10, and T = 20.

Figure 8. Inverted co-histograms for anomalous diffusion using the parameters T = 5, T = 10, and T = 20
(column) and α = 1/2 and α = 3/4 (row) compared to diffusion with α = 1.

In case of anomalous diffusion we note a shortening of the diagonal in all of the
depicted co-histogram comparisons. This is due to the fact that in natural images
diffusion preferably eliminates very large and small gray-values, if they are present
at all. Otherwise, we do not see a significant deviation from diagonality with a most
prominent difference in the case of α = 1/2 and T = 20. Next, we also show the co-
histograms for the dilation process. We use the same parameters as before and obtain
the following co-histograms as shown in Fig. 9.

In case of anomalous dilation a general shortening of the diagonal in all of the
inverted histograms is even more pronounced, which can be understood by dispropor-
tionally large influence of dilation on pixels with extreme gray-values. In comparison
with the case of diffusion the diagonal is more smeared out and the influence of the pa-
rameter α on the evolution process is larger, again with the most significant difference
for the parameter values α = 1/2 and T = 20.

However, we did not yet fully exploit the potential of the concept of co-histograms,
especially its quantitative powers rather than its qualitative aspects. We will concen-
trate on this in future research which will focus on fractional variants of more involved
evolution equations (accessible to level-set-methods) where the time dependence of
the results is more sensitive than in the case of a simple linear diffusion. We expect
a greater impact of the use of the fractional time derivative on the outcome of the
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Figure 9. Inverted co-histograms for modified dilation using the parameters T = 5, T = 10, and T = 20
(column) and α = 1/2 and α = 3/4 (row) compared to dilation with α = 1.

evolution processes.

4.6. Anomalous super-diffusion, modified dilation, erosion, opening, and

closing for 1 < α < 2

Finally, we show results for super-diffusion and the modified dilation/erosion using the
same parameters as before. Note that we have several choices for the second initial
condition. We could for example use a homogeneous initial condition or possibly the
given image itself as the second initial condition. Instigated by the treatment in [50],
we opt for a vanishing second initial condition since for α = 2 (the case of a wave-
equation), these would correspond to a zero-velocity initial field. Therefore, this seems
to be a natural assumption. In Fig. 10 we show results for α = 1.1 (first row) and
α = 1.2 (second row) for anomalous super-diffusion (first column), modified dilation
(second column), and modified erosion (third) column using T = 1 and T = 10.

The first column in Fig. 10 depicts the results of diffusion using as second initial
condition zero (this corresonds to a black image) as already mentioned before. In the
case of anomalous diffusion, an increasing α-value (larger one) seems to have a slightly
accelerating effect on the smoothing, if compared with the results of regular diffusion
(α = 1) as depicted in Fig. 4. One can also discern a mild brightening of the evolved
image. Surprisingly, for the morphological operations the evolution depends sensitively
on α (note the short evolution time T = 1) and leads to a much brighter image for
dilation and a much darker image for erosion. This tendency is more pronounced the
larger α is. At time T = 1 the actual dilation resp. erosion process of the underlying
image has not shown clearly visible effects yet. It appears that the solutions to the
modified transport equations given in (5) mimicking dilation and erosion react very
sensitive to the presence of a second initial condition more than their counterparts in
the case of sub-diffusion. In essence, the role played by this second initial condition is
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(a) T = 10, α = 1.1 (b) T = 1, α = 1.1 (c) T = 1, α = 1.1

(d) T = 10, α = 1.2 (e) T = 1, α = 1.2 (f) T = 1, α = 1.2

Figure 10. Anomalous super-diffusion, modified dilation, and erosion for α = 1.1 (first row) and α = 1.2
(second row) with the parameter T = 1 and T = 10 for the Lena image.

not yet fully understood and hence is subject to future research.

5. Summary and outlook

On the one side, in this paper we modified standard gray-value diffusion of images by
employing Caputo fractional derivatives of order α ∈ (0, 2) instead of the usual first
order derivative in the time domain. The resulting anomalous sub- and super-diffusion
process is treated numerically by means of explicit and implicit Euler methods. On the
other side, we applied the same changes to the transport equations describing dilation
and erosion, the building blocks of continuous scale morphology. We adapted the Rouy-
Tourin-scheme to the Caputo fractional derivative setting to obtain our numerical
results. Fine-tuned comparisons by means of co-histograms illustrate the potential as
well as the shortcomings of this anomalous evolution process in the processing of gray-
value images. With our approach we are capable to produce images with either sub-
diffusion or super-diffusion which then might serve as testing examples for algorithm
such as image deblurring which are theoretically based on linear diffusion.

In our future work, we will consider second-order approximations of the Caputo
fractional derivative in order to improve the overall rate of convergence. In this con-
text, it will also be worthwhile to investigate the usage of multistep methods (BDF,
Adams-Moulton, and Adams-Bashforth methods), see [15] or the recent article [3].
The consideration of related inverse problems for anomalous diffusion is interesting in
its own right (refer to [26]).

Additionally, it is now also possible to consider higher morphological operations
such as opening, closing, and various morphological gradients. The investigation of
fractional modifications of other highly nonlinear PDE-based image processing filters
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seems to be promising, too. The extension of this new approach for color images
or multispectral images would be a new research direction as well (see for example
[4, 8, 27]).
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