000844963 001__ 844963
000844963 005__ 20240712084514.0
000844963 0247_ $$2doi$$a10.1039/C8NR00455B
000844963 0247_ $$2ISSN$$a2040-3364
000844963 0247_ $$2ISSN$$a2040-3372
000844963 0247_ $$2pmid$$apmid:29582026
000844963 0247_ $$2WOS$$aWOS:000429530400045
000844963 037__ $$aFZJ-2018-02298
000844963 082__ $$a600
000844963 1001_ $$00000-0003-1204-1427$$aDonie, Yidenekachew J.$$b0$$eCorresponding author
000844963 245__ $$aLight trapping in thin film silicon solar cells via phase separated disordered nanopillars
000844963 260__ $$aCambridge$$bRSC Publ.$$c2018
000844963 3367_ $$2DRIVER$$aarticle
000844963 3367_ $$2DataCite$$aOutput Types/Journal article
000844963 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523525714_13027
000844963 3367_ $$2BibTeX$$aARTICLE
000844963 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844963 3367_ $$00$$2EndNote$$aJournal Article
000844963 520__ $$aIn this work, we have improved the absorption properties of thin film solar cells by introducing light trapping reflectors deposited onto self-assembled nanostructures. The latter consist of a disordered array of nanopillars and are fabricated by polymer blend lithography. Their broadband light scattering properties are exploited to enhance the photocurrent density of thin film devices, here based on hydrogenated amorphous silicon active layers. We demonstrate that these light scattering nanopillars yield a short-circuit current density increase of +33%rel with respect to equivalent solar cells processed on a planar reflector. Moreover, we experimentally show that they outperform randomly textured substrates that are commonly used for achieving efficient light trapping. Complementary optical simulations are conducted on an accurate 3D model to analyze the superior light harvesting properties of the nanopillar array and to derive general design rules. Our approach allows one to easily tune the morphology of the self-assembled nanostructures, is up-scalable and operated at room temperature, and is applicable to other photovoltaic technologies.
000844963 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000844963 588__ $$aDataset connected to CrossRef
000844963 7001_ $$0P:(DE-Juel1)157887$$aSmeets, Michael$$b1
000844963 7001_ $$0P:(DE-HGF)0$$aEgel, Amos$$b2
000844963 7001_ $$0P:(DE-Juel1)130795$$aLentz, Florian$$b3$$ufzj
000844963 7001_ $$0P:(DE-HGF)0$$aPreinfalk, Jan B.$$b4
000844963 7001_ $$0P:(DE-HGF)0$$aMertens, Adrian$$b5
000844963 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b6$$ufzj
000844963 7001_ $$0P:(DE-HGF)0$$aLemmer, Uli$$b7
000844963 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b8
000844963 7001_ $$00000-0002-4294-1832$$aGomard, Guillaume$$b9$$eCorresponding author
000844963 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C8NR00455B$$gVol. 10, no. 14, p. 6651 - 6659$$n14$$p6651 - 6659$$tNanoscale$$v10$$x2040-3372$$y2018
000844963 8564_ $$uhttps://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.pdf$$yRestricted
000844963 8564_ $$uhttps://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.gif?subformat=icon$$xicon$$yRestricted
000844963 8564_ $$uhttps://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844963 8564_ $$uhttps://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844963 8564_ $$uhttps://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844963 8564_ $$uhttps://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844963 909CO $$ooai:juser.fz-juelich.de:844963$$pVDB
000844963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich$$b3$$kFZJ
000844963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich$$b6$$kFZJ
000844963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b8$$kFZJ
000844963 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000844963 9141_ $$y2018
000844963 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000844963 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844963 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844963 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844963 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844963 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844963 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844963 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844963 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844963 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000844963 920__ $$lyes
000844963 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000844963 980__ $$ajournal
000844963 980__ $$aVDB
000844963 980__ $$aI:(DE-Juel1)IEK-5-20101013
000844963 980__ $$aUNRESTRICTED
000844963 981__ $$aI:(DE-Juel1)IMD-3-20101013