| Home > Publications database > Light trapping in thin film silicon solar cells via phase separated disordered nanopillars > print |
| 001 | 844963 | ||
| 005 | 20240712084514.0 | ||
| 024 | 7 | _ | |a 10.1039/C8NR00455B |2 doi |
| 024 | 7 | _ | |a 2040-3364 |2 ISSN |
| 024 | 7 | _ | |a 2040-3372 |2 ISSN |
| 024 | 7 | _ | |a pmid:29582026 |2 pmid |
| 024 | 7 | _ | |a WOS:000429530400045 |2 WOS |
| 037 | _ | _ | |a FZJ-2018-02298 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Donie, Yidenekachew J. |0 0000-0003-1204-1427 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Light trapping in thin film silicon solar cells via phase separated disordered nanopillars |
| 260 | _ | _ | |a Cambridge |c 2018 |b RSC Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1523525714_13027 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In this work, we have improved the absorption properties of thin film solar cells by introducing light trapping reflectors deposited onto self-assembled nanostructures. The latter consist of a disordered array of nanopillars and are fabricated by polymer blend lithography. Their broadband light scattering properties are exploited to enhance the photocurrent density of thin film devices, here based on hydrogenated amorphous silicon active layers. We demonstrate that these light scattering nanopillars yield a short-circuit current density increase of +33%rel with respect to equivalent solar cells processed on a planar reflector. Moreover, we experimentally show that they outperform randomly textured substrates that are commonly used for achieving efficient light trapping. Complementary optical simulations are conducted on an accurate 3D model to analyze the superior light harvesting properties of the nanopillar array and to derive general design rules. Our approach allows one to easily tune the morphology of the self-assembled nanostructures, is up-scalable and operated at room temperature, and is applicable to other photovoltaic technologies. |
| 536 | _ | _ | |a 121 - Solar cells of the next generation (POF3-121) |0 G:(DE-HGF)POF3-121 |c POF3-121 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Smeets, Michael |0 P:(DE-Juel1)157887 |b 1 |
| 700 | 1 | _ | |a Egel, Amos |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Lentz, Florian |0 P:(DE-Juel1)130795 |b 3 |u fzj |
| 700 | 1 | _ | |a Preinfalk, Jan B. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Mertens, Adrian |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Smirnov, Vladimir |0 P:(DE-Juel1)130297 |b 6 |u fzj |
| 700 | 1 | _ | |a Lemmer, Uli |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Bittkau, Karsten |0 P:(DE-Juel1)130219 |b 8 |
| 700 | 1 | _ | |a Gomard, Guillaume |0 0000-0002-4294-1832 |b 9 |e Corresponding author |
| 773 | _ | _ | |a 10.1039/C8NR00455B |g Vol. 10, no. 14, p. 6651 - 6659 |0 PERI:(DE-600)2515664-0 |n 14 |p 6651 - 6659 |t Nanoscale |v 10 |y 2018 |x 2040-3372 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:844963 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130795 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130297 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130219 |
| 913 | 1 | _ | |a DE-HGF |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |2 G:(DE-HGF)POF3-100 |v Solar cells of the next generation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOSCALE : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NANOSCALE : 2015 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|