001     844963
005     20240712084514.0
024 7 _ |a 10.1039/C8NR00455B
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a pmid:29582026
|2 pmid
024 7 _ |a WOS:000429530400045
|2 WOS
037 _ _ |a FZJ-2018-02298
082 _ _ |a 600
100 1 _ |a Donie, Yidenekachew J.
|0 0000-0003-1204-1427
|b 0
|e Corresponding author
245 _ _ |a Light trapping in thin film silicon solar cells via phase separated disordered nanopillars
260 _ _ |a Cambridge
|c 2018
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1523525714_13027
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, we have improved the absorption properties of thin film solar cells by introducing light trapping reflectors deposited onto self-assembled nanostructures. The latter consist of a disordered array of nanopillars and are fabricated by polymer blend lithography. Their broadband light scattering properties are exploited to enhance the photocurrent density of thin film devices, here based on hydrogenated amorphous silicon active layers. We demonstrate that these light scattering nanopillars yield a short-circuit current density increase of +33%rel with respect to equivalent solar cells processed on a planar reflector. Moreover, we experimentally show that they outperform randomly textured substrates that are commonly used for achieving efficient light trapping. Complementary optical simulations are conducted on an accurate 3D model to analyze the superior light harvesting properties of the nanopillar array and to derive general design rules. Our approach allows one to easily tune the morphology of the self-assembled nanostructures, is up-scalable and operated at room temperature, and is applicable to other photovoltaic technologies.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Smeets, Michael
|0 P:(DE-Juel1)157887
|b 1
700 1 _ |a Egel, Amos
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lentz, Florian
|0 P:(DE-Juel1)130795
|b 3
|u fzj
700 1 _ |a Preinfalk, Jan B.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mertens, Adrian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 6
|u fzj
700 1 _ |a Lemmer, Uli
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 8
700 1 _ |a Gomard, Guillaume
|0 0000-0002-4294-1832
|b 9
|e Corresponding author
773 _ _ |a 10.1039/C8NR00455B
|g Vol. 10, no. 14, p. 6651 - 6659
|0 PERI:(DE-600)2515664-0
|n 14
|p 6651 - 6659
|t Nanoscale
|v 10
|y 2018
|x 2040-3372
856 4 _ |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844963/files/Nanoscale10_6651.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844963
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130219
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21