000844985 001__ 844985
000844985 005__ 20221213070659.0
000844985 0247_ $$2doi$$a10.1016/j.elspec.2017.07.007
000844985 0247_ $$2ISSN$$a0368-2048
000844985 0247_ $$2ISSN$$a1873-2526
000844985 0247_ $$2WOS$$aWOS:000423638100015
000844985 037__ $$aFZJ-2018-02320
000844985 041__ $$aEnglish
000844985 082__ $$a620
000844985 1001_ $$0P:(DE-Juel1)161411$$avan Straaten, Gerben$$b0$$eCorresponding author
000844985 245__ $$aNon-dipolar effects in photoelectron-based normal incidence X-ray standing wave experiments
000844985 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000844985 3367_ $$2DRIVER$$aarticle
000844985 3367_ $$2DataCite$$aOutput Types/Journal article
000844985 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670911595_32695
000844985 3367_ $$2BibTeX$$aARTICLE
000844985 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844985 3367_ $$00$$2EndNote$$aJournal Article
000844985 520__ $$aThe normal incidence X-ray standing waves technique is one of the most well-established methods for investigating the geometric structure at interfaces and surfaces. It is able to measure vertical positions and distances of individual atomic species with very high precision (typically <0.02 Å). These data not only yield valuable structural information, but also represent an excellent benchmark for density functional theory and ab initio calculations. Non-dipolar effects are well known to strongly affect the result, in particular when light elements are involved. A correction mechanism for these effects is established, but in its commonly-used form it is based on one essential restriction, namely the assumption of perfect normal incidence of the X-rays with respect to the relevant lattice planes of the crystal. Here, we show that small deviations from normal incidence, as they are unavoidable in typical experimental setups, lead to significant systematic errors in the NIXSW results. The magnitude of this effect depends on the specific conditions in a non-linear way and may reach up to 5%, corresponding to several tenths of an Ångström in the adsorption height. We present a straightforward way of accounting for this effect, and demonstrate that recording the photoelectron yield in an angular-resolved mode is indispensable, since the correction parameters strongly depend on the electron take-off angle.
000844985 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000844985 588__ $$aDataset connected to CrossRef
000844985 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b1
000844985 7001_ $$0P:(DE-Juel1)167128$$aPosseik, Francois$$b2$$ufzj
000844985 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b3
000844985 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b4
000844985 773__ $$0PERI:(DE-600)1491139-5$$a10.1016/j.elspec.2017.07.007$$gVol. 222, p. 106 - 116$$p106 - 116$$tJournal of electron spectroscopy and related phenomena$$v222$$x0368-2048$$y2018
000844985 8564_ $$uhttps://juser.fz-juelich.de/record/844985/files/1-s2.0-S0368204817300816-main.pdf$$yRestricted
000844985 8564_ $$uhttps://juser.fz-juelich.de/record/844985/files/1-s2.0-S0368204817300816-main.gif?subformat=icon$$xicon$$yRestricted
000844985 8564_ $$uhttps://juser.fz-juelich.de/record/844985/files/1-s2.0-S0368204817300816-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844985 8564_ $$uhttps://juser.fz-juelich.de/record/844985/files/1-s2.0-S0368204817300816-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844985 8564_ $$uhttps://juser.fz-juelich.de/record/844985/files/1-s2.0-S0368204817300816-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844985 8564_ $$uhttps://juser.fz-juelich.de/record/844985/files/1-s2.0-S0368204817300816-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844985 909CO $$ooai:juser.fz-juelich.de:844985$$pVDB
000844985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161411$$aForschungszentrum Jülich$$b0$$kFZJ
000844985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161374$$aForschungszentrum Jülich$$b1$$kFZJ
000844985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b2$$kFZJ
000844985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
000844985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b4$$kFZJ
000844985 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000844985 9141_ $$y2018
000844985 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844985 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844985 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTRON SPECTROSC : 2015
000844985 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844985 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844985 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844985 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844985 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844985 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844985 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844985 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844985 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844985 920__ $$lyes
000844985 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000844985 980__ $$ajournal
000844985 980__ $$aVDB
000844985 980__ $$aI:(DE-Juel1)PGI-3-20110106
000844985 980__ $$aUNRESTRICTED