000844990 001__ 844990
000844990 005__ 20210129233211.0
000844990 0247_ $$2doi$$a10.1038/s42005-018-0005-8
000844990 0247_ $$2Handle$$a2128/18024
000844990 0247_ $$2WOS$$aWOS:000433471800005
000844990 0247_ $$2altmetric$$aaltmetric:33525821
000844990 037__ $$aFZJ-2018-02325
000844990 082__ $$a530
000844990 1001_ $$0P:(DE-HGF)0$$aKellner, J.$$b0
000844990 245__ $$aMapping the band structure of GeSbTe phase change alloys around the Fermi level
000844990 260__ $$aLondon$$bSpringer Nature$$c2018
000844990 3367_ $$2DRIVER$$aarticle
000844990 3367_ $$2DataCite$$aOutput Types/Journal article
000844990 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552635852_21951
000844990 3367_ $$2BibTeX$$aARTICLE
000844990 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844990 3367_ $$00$$2EndNote$$aJournal Article
000844990 520__ $$aPhase change alloys are used for non-volatile random-access memories exploiting the conductivity contrast between amorphous and metastable, crystalline phase. However, this contrast has never been directly related to the electronic band structure. Here we employ photoelectron spectroscopy to map the relevant bands for metastable, epitaxial GeSbTe films. The constant energy surfaces of the valence band close to the Fermi level are hexagonal tubes with little dispersion perpendicular to the (111) surface. The electron density responsible for transport belongs to the tails of this bulk valence band, which is broadened by disorder, i.e., the Fermi level is 100 meV above the valence band maximum. This result is consistent with transport data of such films in terms of charge carrier density and scattering time. In addition, we find a state in the bulk band gap with linear dispersion, which might be of topological origin.
000844990 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000844990 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x1
000844990 588__ $$aDataset connected to CrossRef
000844990 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b1
000844990 7001_ $$00000-0003-4787-0129$$aLiebmann, M.$$b2
000844990 7001_ $$0P:(DE-HGF)0$$aOtto, S.$$b3
000844990 7001_ $$0P:(DE-HGF)0$$aPauly, C.$$b4
000844990 7001_ $$0P:(DE-HGF)0$$aBoschker, J. E.$$b5
000844990 7001_ $$00000-0001-9947-6700$$aBragaglia, V.$$b6
000844990 7001_ $$0P:(DE-HGF)0$$aCecchi, S.$$b7
000844990 7001_ $$0P:(DE-HGF)0$$aWang, R. N.$$b8
000844990 7001_ $$0P:(DE-HGF)0$$aDeringer, V. L.$$b9
000844990 7001_ $$0P:(DE-HGF)0$$aKüppers, P.$$b10
000844990 7001_ $$0P:(DE-HGF)0$$aBhaskar, P.$$b11
000844990 7001_ $$0P:(DE-HGF)0$$aGolias, E.$$b12
000844990 7001_ $$0P:(DE-HGF)0$$aSánchez-Barriga, J.$$b13
000844990 7001_ $$0P:(DE-HGF)0$$aDronskowski, R.$$b14
000844990 7001_ $$00000-0001-8049-2866$$aFauster, T.$$b15
000844990 7001_ $$00000-0003-3639-0971$$aRader, O.$$b16
000844990 7001_ $$0P:(DE-HGF)0$$aCalarco, R.$$b17
000844990 7001_ $$0P:(DE-HGF)0$$aMorgenstern, M.$$b18$$eCorresponding author
000844990 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-018-0005-8$$gVol. 1, no. 1, p. 5$$n1$$p5$$tCommunications Physics$$v1$$x2399-3650$$y2018
000844990 8564_ $$uhttps://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.pdf$$yOpenAccess
000844990 8564_ $$uhttps://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.gif?subformat=icon$$xicon$$yOpenAccess
000844990 8564_ $$uhttps://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844990 8564_ $$uhttps://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844990 8564_ $$uhttps://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844990 8564_ $$uhttps://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844990 909CO $$ooai:juser.fz-juelich.de:844990$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000844990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b1$$kFZJ
000844990 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000844990 9141_ $$y2018
000844990 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844990 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844990 920__ $$lyes
000844990 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000844990 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000844990 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000844990 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000844990 980__ $$ajournal
000844990 980__ $$aVDB
000844990 980__ $$aI:(DE-Juel1)PGI-1-20110106
000844990 980__ $$aI:(DE-Juel1)IAS-1-20090406
000844990 980__ $$aI:(DE-82)080009_20140620
000844990 980__ $$aI:(DE-82)080012_20140620
000844990 980__ $$aUNRESTRICTED
000844990 9801_ $$aFullTexts