001     844990
005     20210129233211.0
024 7 _ |a 10.1038/s42005-018-0005-8
|2 doi
024 7 _ |a 2128/18024
|2 Handle
024 7 _ |a WOS:000433471800005
|2 WOS
024 7 _ |a altmetric:33525821
|2 altmetric
037 _ _ |a FZJ-2018-02325
082 _ _ |a 530
100 1 _ |a Kellner, J.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mapping the band structure of GeSbTe phase change alloys around the Fermi level
260 _ _ |a London
|c 2018
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552635852_21951
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phase change alloys are used for non-volatile random-access memories exploiting the conductivity contrast between amorphous and metastable, crystalline phase. However, this contrast has never been directly related to the electronic band structure. Here we employ photoelectron spectroscopy to map the relevant bands for metastable, epitaxial GeSbTe films. The constant energy surfaces of the valence band close to the Fermi level are hexagonal tubes with little dispersion perpendicular to the (111) surface. The electron density responsible for transport belongs to the tails of this bulk valence band, which is broadened by disorder, i.e., the Fermi level is 100 meV above the valence band maximum. This result is consistent with transport data of such films in terms of charge carrier density and scattering time. In addition, we find a state in the bulk band gap with linear dispersion, which might be of topological origin.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a Magnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)
|0 G:(DE-Juel1)jiff13_20131101
|c jiff13_20131101
|f Magnetic Anisotropy of Metallic Layered Systems and Nanostructures
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bihlmayer, G.
|0 P:(DE-Juel1)130545
|b 1
700 1 _ |a Liebmann, M.
|0 0000-0003-4787-0129
|b 2
700 1 _ |a Otto, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pauly, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Boschker, J. E.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bragaglia, V.
|0 0000-0001-9947-6700
|b 6
700 1 _ |a Cecchi, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wang, R. N.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Deringer, V. L.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Küppers, P.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Bhaskar, P.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Golias, E.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Sánchez-Barriga, J.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Dronskowski, R.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Fauster, T.
|0 0000-0001-8049-2866
|b 15
700 1 _ |a Rader, O.
|0 0000-0003-3639-0971
|b 16
700 1 _ |a Calarco, R.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Morgenstern, M.
|0 P:(DE-HGF)0
|b 18
|e Corresponding author
773 _ _ |a 10.1038/s42005-018-0005-8
|g Vol. 1, no. 1, p. 5
|0 PERI:(DE-600)2921913-9
|n 1
|p 5
|t Communications Physics
|v 1
|y 2018
|x 2399-3650
856 4 _ |u https://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844990/files/s42005-018-0005-8.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:844990
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130545
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21