000845001 001__ 845001
000845001 005__ 20210129233213.0
000845001 0247_ $$2doi$$a10.1021/acs.jpcc.8b02689
000845001 0247_ $$2ISSN$$a1932-7447
000845001 0247_ $$2ISSN$$a1932-7455
000845001 0247_ $$2WOS$$aWOS:000430896500051
000845001 037__ $$aFZJ-2018-02332
000845001 041__ $$aEnglish
000845001 082__ $$a540
000845001 1001_ $$0P:(DE-Juel1)161411$$avan Straaten, Gerben$$b0$$eCorresponding author
000845001 245__ $$aRole of the Central Metal Atom in Substrate-Mediated Molecular Interactions in Phthalocyanine-Based Heteromolecular Monolayers
000845001 260__ $$aWashington, DC$$bSoc.$$c2018
000845001 3367_ $$2DRIVER$$aarticle
000845001 3367_ $$2DataCite$$aOutput Types/Journal article
000845001 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524571964_25913
000845001 3367_ $$2BibTeX$$aARTICLE
000845001 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845001 3367_ $$00$$2EndNote$$aJournal Article
000845001 520__ $$aMolecular monolayer films containing two different types of molecules (so-called heteromolecular films) are promising candidates for the controlled functionalization of metal–organic hybrid interfaces. This is particularly true for blends formed by charge donor and acceptor molecules. Here we study heteromolecular monolayer systems containing 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) as charge acceptor, and either copper(II) or tin(II) phthalocyanine (CuPc or SnPc) as charge donor, adsorbed on Ag(111). We find that both systems exhibit structural phases with identical lateral ordering (isostructural phases), which is an important prerequisite for studying the role of the central metal atom without competing effects caused by different lateral structures. Using normal incidence X-ray standing waves and photoemission tomography we find distinct differences in the (vertical) geometric and electronic structure for the heteromolecular systems under study: While the vertical structure of CuPc is essentially unaffected by mixing with PTCDA, the SnPc clearly reacts to the formation of a blend by reducing its adsorption height by approximately 0.2 Å. Also, the vertical structure of the PTCDA anhydride groups changes strongly: While the anhydride oxygen atoms are located below the perylene core for most mixed phases, for one of the PTCDA + CuPc phases it is lying above the perylene core. Regarding the electronic structure we find that while mixing with PTCDA causes a complete depletion of the CuPc former lowest unoccupied molecular orbital (FLUMO), the SnPc FLUMO is pinned to the Fermi level instead, and thus it remains partially filled. We demonstrate that all these differences are driven by the rearrangement of the substrate electron density in the vicinity of the PTCDA molecules, which are caused by the interaction with the metal phthalocyanine molecules.
000845001 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000845001 588__ $$aDataset connected to CrossRef
000845001 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b1
000845001 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b2
000845001 7001_ $$0P:(DE-Juel1)139025$$aStadtmüller, Benjamin$$b3
000845001 7001_ $$00000-0002-0827-2022$$aDuncan, David A.$$b4
000845001 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b5
000845001 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b6$$ufzj
000845001 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b7$$eCorresponding author
000845001 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.8b02689$$gp. acs.jpcc.8b02689$$n15$$p8491–8504$$tThe @journal of physical chemistry <Washington, DC> / C$$v122$$x1932-7455$$y2018
000845001 8564_ $$uhttps://juser.fz-juelich.de/record/845001/files/acs.jpcc.8b02689.pdf$$yRestricted
000845001 8564_ $$uhttps://juser.fz-juelich.de/record/845001/files/acs.jpcc.8b02689.gif?subformat=icon$$xicon$$yRestricted
000845001 8564_ $$uhttps://juser.fz-juelich.de/record/845001/files/acs.jpcc.8b02689.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845001 8564_ $$uhttps://juser.fz-juelich.de/record/845001/files/acs.jpcc.8b02689.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845001 8564_ $$uhttps://juser.fz-juelich.de/record/845001/files/acs.jpcc.8b02689.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845001 8564_ $$uhttps://juser.fz-juelich.de/record/845001/files/acs.jpcc.8b02689.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845001 909CO $$ooai:juser.fz-juelich.de:845001$$pVDB
000845001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161411$$aForschungszentrum Jülich$$b0$$kFZJ
000845001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161374$$aForschungszentrum Jülich$$b1$$kFZJ
000845001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000845001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139025$$aForschungszentrum Jülich$$b3$$kFZJ
000845001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b6$$kFZJ
000845001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b7$$kFZJ
000845001 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000845001 9141_ $$y2018
000845001 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2015
000845001 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845001 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845001 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845001 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845001 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845001 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845001 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845001 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845001 920__ $$lyes
000845001 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000845001 980__ $$ajournal
000845001 980__ $$aVDB
000845001 980__ $$aI:(DE-Juel1)PGI-3-20110106
000845001 980__ $$aUNRESTRICTED