000845004 001__ 845004
000845004 005__ 20220930130145.0
000845004 0247_ $$2doi$$a10.3389/fphys.2018.00376
000845004 0247_ $$2Handle$$a2128/18031
000845004 0247_ $$2WOS$$aWOS:000429829800001
000845004 0247_ $$2altmetric$$aaltmetric:38694207
000845004 0247_ $$2pmid$$apmid:29706900
000845004 037__ $$aFZJ-2018-02334
000845004 082__ $$a610
000845004 1001_ $$0P:(DE-Juel1)164577$$aManos, Thanos$$b0$$eCorresponding author
000845004 245__ $$aShort-Term Dosage Regimen for Stimulation-Induced Long-Lasting Desynchronization
000845004 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000845004 3367_ $$2DRIVER$$aarticle
000845004 3367_ $$2DataCite$$aOutput Types/Journal article
000845004 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528810314_24867
000845004 3367_ $$2BibTeX$$aARTICLE
000845004 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845004 3367_ $$00$$2EndNote$$aJournal Article
000845004 520__ $$aIn this paper, we computationally generate hypotheses for dose-finding studies in the context of desynchronizing neuromodulation techniques. Abnormally strong neuronal synchronization is a hallmark of several brain disorders. Coordinated Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that specifically aims at disrupting abnormal neuronal synchrony. In networks with spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This long-lasting desynchronization was theoretically predicted and verified in several pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences (SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to variations of the CR stimulation frequency. Motivated by clinical constraints and inspired by the spacing principle of learning theory, in this computational study we propose a short-term dosage regimen that enables a robust anti-kindling effect of both RVS and SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation previously turned out to be ineffective. Intriguingly, for the vast majority of parameter values tested, spaced multishot CR stimulation with demand-controlled variation of stimulation frequency and intensity caused a robust and pronounced anti-kindling. In contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot CR stimulation of equal integral duration failed to improve the stimulation outcome. In the model network under consideration, our short-term dosage regimen enables to robustly induce long-term desynchronization at comparably short stimulation duration and low integral stimulation duration. Currently, clinical proof of concept is available for deep brain CR stimulation for Parkinson's therapy and acoustic CR stimulation for tinnitus therapy. Promising first in human data is available for vibrotactile CR stimulation for Parkinson's treatment. For the clinical development of these treatments it is mandatory to perform dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our findings can straightforwardly be tested in human dose-finding studies.
000845004 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000845004 588__ $$aDataset connected to CrossRef
000845004 7001_ $$0P:(DE-Juel1)136723$$aZeitler, Magteld$$b1
000845004 7001_ $$0P:(DE-HGF)0$$aTass, Peter A.$$b2
000845004 773__ $$0PERI:(DE-600)2564217-0$$a10.3389/fphys.2018.00376$$gVol. 9, p. 376$$p376$$tFrontiers in physiology$$v9$$x1664-042X$$y2018
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/2017-0101279-3.pdf
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/fphys-09-00376.pdf$$yOpenAccess
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/fphys-09-00376.gif?subformat=icon$$xicon$$yOpenAccess
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/fphys-09-00376.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/fphys-09-00376.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/fphys-09-00376.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/fphys-09-00376.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/2017-0101279-3.gif?subformat=icon$$xicon
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/2017-0101279-3.jpg?subformat=icon-1440$$xicon-1440
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/2017-0101279-3.jpg?subformat=icon-180$$xicon-180
000845004 8564_ $$uhttps://juser.fz-juelich.de/record/845004/files/2017-0101279-3.jpg?subformat=icon-640$$xicon-640
000845004 8767_ $$82017-0109795-2$$92018-03-27$$d2018-04-06$$eAPC$$jDeposit$$lDeposit: Frontiers$$zReporting 03/2018
000845004 909CO $$ooai:juser.fz-juelich.de:845004$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000845004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164577$$aForschungszentrum Jülich$$b0$$kFZJ
000845004 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000845004 9141_ $$y2018
000845004 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845004 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845004 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000845004 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYSIOL : 2015
000845004 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000845004 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000845004 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845004 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845004 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845004 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845004 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845004 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845004 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845004 920__ $$lyes
000845004 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000845004 980__ $$ajournal
000845004 980__ $$aVDB
000845004 980__ $$aI:(DE-Juel1)INM-7-20090406
000845004 980__ $$aAPC
000845004 980__ $$aUNRESTRICTED
000845004 9801_ $$aAPC
000845004 9801_ $$aFullTexts