000845022 001__ 845022
000845022 005__ 20240709094318.0
000845022 0247_ $$2doi$$a10.1002/2017GL074939
000845022 0247_ $$2ISSN$$a0094-8276
000845022 0247_ $$2ISSN$$a1944-8007
000845022 0247_ $$2Handle$$a2128/18040
000845022 0247_ $$2WOS$$aWOS:000419102300020
000845022 0247_ $$2altmetric$$aaltmetric:21871989
000845022 037__ $$aFZJ-2018-02351
000845022 082__ $$a550
000845022 1001_ $$0P:(DE-HGF)0$$aAldam, Michael$$b0
000845022 245__ $$aCritical Nucleation Length for Accelerating Frictional Slip
000845022 260__ $$aHoboken, NJ$$bWiley$$c2017
000845022 3367_ $$2DRIVER$$aarticle
000845022 3367_ $$2DataCite$$aOutput Types/Journal article
000845022 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523540813_13024
000845022 3367_ $$2BibTeX$$aARTICLE
000845022 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845022 3367_ $$00$$2EndNote$$aJournal Article
000845022 520__ $$aThe spontaneous nucleation of accelerating slip along slowly driven frictional interfaces is central to a broad range of geophysical, physical, and engineering systems, with particularly far‐reaching implications for earthquake physics. A common approach to this problem associates nucleation with an instability of an expanding creep patch upon surpassing a critical length Lc. The critical nucleation length Lc is conventionally obtained from a spring‐block linear stability analysis extended to interfaces separating elastically deformable bodies using model‐dependent fracture mechanics estimates. We propose an alternative approach in which the critical nucleation length is obtained from a related linear stability analysis of homogeneous sliding along interfaces separating elastically deformable bodies. For elastically identical half‐spaces and rate‐and‐state friction, the two approaches are shown to yield Lc that features the same scaling structure, but with substantially different numerical prefactors, resulting in a significantly larger Lc in our approach. The proposed approach is also shown to be naturally applicable to finite‐size systems and bimaterial interfaces, for which various analytic results are derived. To quantitatively test the proposed approach, we performed inertial Finite‐Element‐Method calculations for a finite‐size two‐dimensional elastically deformable body in rate‐and‐state frictional contact with a rigid body under sideway loading. We show that the theoretically predicted Lc and its finite‐size dependence are in reasonably good quantitative agreement with the full numerical solutions, lending support to the proposed approach. These results offer a theoretical framework for predicting rapid slip nucleation along frictional interfaces. 
000845022 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000845022 588__ $$aDataset connected to CrossRef
000845022 7001_ $$0P:(DE-Juel1)169962$$aWeikamp, Marc$$b1
000845022 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b2
000845022 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim A.$$b3
000845022 7001_ $$0P:(DE-HGF)0$$aBouchbinder, Eran$$b4$$eCorresponding author
000845022 773__ $$0PERI:(DE-600)2021599-X$$a10.1002/2017GL074939$$gVol. 44, no. 22, p. 11,390 - 11,398$$n22$$p11,390 - 11,398$$tGeophysical research letters$$v44$$x0094-8276$$y2017
000845022 8564_ $$uhttps://juser.fz-juelich.de/record/845022/files/Aldam_et_al-2017-Geophysical_Research_Letters.pdf$$yPublished on 2018-11-28. Available in OpenAccess from 2019-05-28.
000845022 8564_ $$uhttps://juser.fz-juelich.de/record/845022/files/Aldam_et_al-2017-Geophysical_Research_Letters.gif?subformat=icon$$xicon$$yPublished on 2018-11-28. Available in OpenAccess from 2019-05-28.
000845022 8564_ $$uhttps://juser.fz-juelich.de/record/845022/files/Aldam_et_al-2017-Geophysical_Research_Letters.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-11-28. Available in OpenAccess from 2019-05-28.
000845022 8564_ $$uhttps://juser.fz-juelich.de/record/845022/files/Aldam_et_al-2017-Geophysical_Research_Letters.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-11-28. Available in OpenAccess from 2019-05-28.
000845022 8564_ $$uhttps://juser.fz-juelich.de/record/845022/files/Aldam_et_al-2017-Geophysical_Research_Letters.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-11-28. Available in OpenAccess from 2019-05-28.
000845022 8564_ $$uhttps://juser.fz-juelich.de/record/845022/files/Aldam_et_al-2017-Geophysical_Research_Letters.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-11-28. Available in OpenAccess from 2019-05-28.
000845022 909CO $$ooai:juser.fz-juelich.de:845022$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000845022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169962$$aForschungszentrum Jülich$$b1$$kFZJ
000845022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b2$$kFZJ
000845022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b3$$kFZJ
000845022 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000845022 9141_ $$y2018
000845022 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845022 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000845022 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2015
000845022 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845022 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845022 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845022 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845022 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845022 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845022 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845022 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845022 920__ $$lyes
000845022 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000845022 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000845022 9801_ $$aFullTexts
000845022 980__ $$ajournal
000845022 980__ $$aVDB
000845022 980__ $$aUNRESTRICTED
000845022 980__ $$aI:(DE-Juel1)PGI-2-20110106
000845022 980__ $$aI:(DE-Juel1)IEK-2-20101013
000845022 981__ $$aI:(DE-Juel1)IMD-1-20101013