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Abstract The spontaneous nucleation of accelerating slip along slowly driven frictional interfaces is
central to a broad range of geophysical, physical, and engineering systems, with particularly far-reaching
implications for earthquake physics. A common approach to this problem associates nucleation with an
instability of an expanding creep patch upon surpassing a critical length Lc. The critical nucleation length
Lc is conventionally obtained from a spring-block linear stability analysis extended to interfaces separating
elastically deformable bodies using model-dependent fracture mechanics estimates. We propose an
alternative approach in which the critical nucleation length is obtained from a related linear stability analysis
of homogeneous sliding along interfaces separating elastically deformable bodies. For elastically identical
half-spaces and rate-and-state friction, the two approaches are shown to yield Lc that features the same
scaling structure, but with substantially different numerical prefactors, resulting in a significantly larger
Lc in our approach. The proposed approach is also shown to be naturally applicable to finite-size systems
and bimaterial interfaces, for which various analytic results are derived. To quantitatively test the proposed
approach, we performed inertial Finite-Element-Method calculations for a finite-size two-dimensional
elastically deformable body in rate-and-state frictional contact with a rigid body under sideway loading. We
show that the theoretically predicted Lc and its finite-size dependence are in reasonably good quantitative
agreement with the full numerical solutions, lending support to the proposed approach. These results offer
a theoretical framework for predicting rapid slip nucleation along frictional interfaces.

1. Introduction

The process of rupture nucleation in which slowly driven frictional interfaces (faults) spontaneously develop
elastodynamically propagating fronts accompanied by rapid slip is of fundamental importance for various
fields, with far-reaching implications for earthquake physics. Quantitatively understanding the nucleation
process is essential for predicting the dynamics of frictional interfaces in general and for earthquake dynam-
ics in particular. There exists some observational evidence, based on seismological records (Harris, 2017;
Ohnaka, 2000; Scholz, 1998), and some experimental evidence, based on laboratory measurements (Dieterich,
1979; Kato et al., 1992; Latour et al., 2013; McLaskey & Kilgore, 2013; Ohnaka & Kuwahara, 1990), which
suggest that rapid rupture propagation accompanied by a marked seismological signature is preceded by
precursory aseismic slip. This precursory aseismic slip is commonly associated with a slowly expanding creep
patch defined as a slipping segment of finite linear size L(t), embedded within a nonslipping fault. Accel-
erating slip is expected to emerge once L(t) surpasses a critical nucleation length Lc. We note that other
nucleation scenarios have been considered in the literature, see, for example, Ben-Zion (2008), but are not
discussed here.

Various theoretical and computational works have indicated that the nucleation of accelerating slip is related
to a frictional instability (Ben-Zion, 2001, 2008; Ben-Zion & Rice, 1997; Kaneko & Lapusta, 2008; Kaneko et al.,
2016; Lapusta & Rice, 2003; Ruina, 1983; Scholz, 1998; Uenishi & Rice, 2003; Yamashita & Ohnaka, 1991). From
this perspective, the critical nucleation length Lc corresponds to the critical conditions for the onset of insta-
bility that leads to accelerating slip and to the spontaneous propagation of elastodynamic rupture fronts. A
major challenge is to understand the relations between the critical instability conditions and Lc. In this letter,
we propose a theoretical approach for predicting Lc which differs from the conventional approach.

The conventional approach, based on a single degree of freedom spring-block analysis extended to
deformable bodies using various model-dependent fracture mechanics estimates, is discussed in the
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framework of rate-and-state constitutive laws in section 2. Our approach, based on the stability of homoge-
neous sliding of elastically deformable bodies, is introduced in section 3 and is shown to yield a significantly
larger Lc for elastically identical half-spaces and rate-and-state friction. In section 4 we show that the pro-
posed approach is naturally applicable to bimaterial interfaces, which are of great interest in various contexts
(Adams, 2001; Aldam et al., 2017; Allam et al., 2014; Ampuero & Ben-Zion, 2008; Andrews & Ben-Zion, 1997;
Ben-Zion, 2001; Ben-Zion & Andrews, 1998; Brener et al., 2016; Cochard & Rice, 2000; Gerde & Marder, 2001;
Ranjith & Rice, 2001; Rice et al., 2001; Rubin & Ampuero, 2007; Shi & Ben-Zion, 2006; Weertman, 1980), and
derive analytic results for Lc in this case, indicating that the bimaterial effect decreases Lc compared to avail-
able predictions in the literature. Finally, in section 5 we show that the proposed approach is applicable to
finite-size systems and test our predictions against inertial Finite-Element-Method calculations for a finite-size
two-dimensional elastically deformable body in rate-and-state frictional contact with a rigid body under side-
way loading. The theoretically predicted Lc and its finite-size dependence are shown to be in reasonably
good quantitative agreement with the full numerical solutions, lending support to the proposed approach.
Section 6 offers some concluding remarks and discusses some prospects.

2. A Conventional Approach to Calculating the Nucleation Length Lc

As stated, the most prevalent approach to the nucleation of rapid slip at frictional interfaces associates nucle-
ation with an instability of a slowly expanding creep patch. The creep patch features a nonuniform spatial
distribution of slip velocity, in the quasi-static regime (where inertia and acoustic radiation are negligible), due
to some external loading. It is assumed to be stable as long as its length L(t) is smaller than a critical nucleation
length Lc. When L(t) = Lc, the patch becomes unstable and transforms into a rupture front, accompanied by
accelerated slip and dynamic propagation (where inertia and significant acoustic radiation are involved). As
creep patches are nonstationary objects that involve spatially varying fields, determining their stability—and
hence Lc —is a nontrivial challenge that typically requires invoking some approximations.

The most common approximation proceeds in two steps (Dieterich, 1986, 1992; Kaneko and Lapusta, 2008;
Lapusta et al., 2000). First, the creep patch and the two elastically deformable bodies that form the frictional
interface are replaced by a rigid block of mass M in contact with a rigid substrate and attached to a Hookean
spring of stiffness K . That is, all of the spatial aspects of the problem are first neglected. The external loading
and the typical slip velocity within the patch are mimicked by constantly pulling the Hookean spring at a
velocity V . The rigid block is pressed against the rigid substrate by a normal force FN, which gives rise to a
frictional resistance force fFN, where f is described by the friction law, which may depend on the block’s slip
u(t), its time derivatives and the state of the frictional interface.

This single degree of freedom spring-block system is described by the force balance equation Mü(t) =
K(Vt − u(t)) − f (…)FN, where each superimposed dot denotes a time derivative. We assume that f (…) can
be described by the rate-and-state constitutive framework, where f (u̇(t), 𝜙(t)) is a function of the slip velocity
u̇ and of an internal state variable 𝜙. The latter, which quantifies the typical age/maturity of contact asperi-
ties, evolves according to 𝜙̇ = g(𝜙 u̇∕D), where D is a memory length scale and the function g(Ω) satisfies
g(1) = 0 and g′(1) < 0. For example, two popular choices, that is, g(Ω) = 1 − Ω (Baumberger & Caroli, 2006;
Bhattacharya & Rubin, 2014; Marone, 1998; Nakatani, 2001; Ruina, 1983) and g(Ω) = −Ω logΩ (Bhattacharya
& Rubin, 2014; Gu et al., 1984; Ruina, 1983), feature g′(1) = −1.

Consider then a steady sliding state at a constant driving velocity u̇ = V such that 𝜙 = D∕V . A standard linear
stability analysis implies that this steady state becomes unstable if (Baumberger & Caroli, 2006; Bhattacharya
& Rubin, 2014; Gu et al., 1984; Lapusta et al., 2000; Rice & Ruina, 1983; Ruina, 1983)

K < Kc ≡
df (V,D∕V)

d log V

g′(1) FN

D
, (1)

where an inertial term proportional to MV2 has been neglected. That is, an instability is predicted when the
spring stiffness K is smaller than a critical stiffness Kc. Note that since generically g′(1) < 0, a necessary condi-
tion for instability is df (V,D∕V)∕dV < 0, that is, that the sliding velocity V belongs to the velocity-weakening
branch of the steady state friction curve (Ruina, 1983).

In the second step, the analysis is extended to spatially varying fields and elastically deformable bodies—
relevant to realistic creep patches—by identifying the spring stiffness K in the spring-block system with
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an L-dependent effective stiffness Keff(L) in the spatially varying and elastically deformable system. This is
typically done through some fracture mechanics estimates which yield (Dieterich, 1986; Rice, 1993)

Keff(L) = 𝜂
𝜇An

L
, (2)

where 𝜇 is the shear modulus, An is the nominal contact area, and the dimensionless number 𝜂 is a
model-dependent prefactor. As expected physically, the effective stiffness of the overall system, Keff, is a
decreasing function of the length of the creep patch, L. Using then Keff < Kc of equation (1) as an instability
criterion, one obtains

L> Lc ≡ 𝜂
𝜇D

df (V,D∕V)
d log V

g′(1) 𝜎0

, (3)

where 𝜎0 = FN∕An. The numerical prefactor 𝜂 is model dependent (e.g., it depends on the crack configuration,
dimensionality, and loading configuration), and its value varies between 2∕𝜋 and 4∕3 in the available literature
(Dieterich, 1992, see Table 1). The nucleation criterion in equation (3), with 𝜂 close to unity, is widely used
in the literature, though we are not aware of computational or experimental studies that quantitatively and
systematically tested it. Next, we present a different approach for calculating Lc.

3. An Approach Based On the Stability of Homogeneous Sliding of Elastically
Deformable Bodies

Our goal here is to propose an alternative approach to calculating the critical nucleation length Lc. In the
proposed approach, nucleation is viewed as a spatiotemporal instability occurring along the creep patch
which is assumed to be stable from the fracture mechanics perspective, that is, to propagate under stable
Griffith energy balance conditions (Freund, 1990). Since, in general, an elastic body can be thought of as a
scale-dependent spring, one expects short wavelength 𝜆 (large wave number k = 2𝜋∕𝜆) perturbations to be
stable and instability—if it exists—to emerge beyond a critical (minimal) wavelength 𝜆c (i.e., below a critical
wave number kc). Consequently, when the size L(t) of the expanding creep patch is small, L(t) < 2𝜋∕kc, we
expect it to be stable. A loss of stability is expected when an unstable perturbation can first fit into the creep
patch, that is, when the patch size satisfies L(t) = Lc ≡ 2𝜋∕kc.

In this physical picture, the major goal is to calculate the critical wave number kc. There is, however, no unique
and general procedure to study the stability of nonstationary (time dependent) and spatially varying solutions
such as those associated with an expanding creep patch. Consequently, we invoke an approximation in which
the spatially varying slip velocity within the creep patch is replaced by a homogeneous (space-independent)
characteristic slip velocity V . With this approximation in mind, we need to study the stability of steady state
homogeneous sliding of an infinitely long system (in the sliding direction) in order to calculate kc. Applying
the result to the actual creep patch, accelerating slip nucleation is predicted to occur when L(t) = Lc ≡ 2𝜋∕kc.
This idea has been introduced, pursued, and substantiated in the context of thin layers sliding on top of rigid
substrates in Bar-Sinai et al. (2013). Our aim here is to significantly generalize the idea to any frictional system.

We consider a long elastic body in the x direction of height H(1) in the y direction steadily sliding with a relative
slip velocity V on top of a long elastic body of height H(2). The bodies may be made of different elastic materials
and are pressed one against the other by a normal stress 𝜎0, see Figure 1 (left). As we are interested in the
response of the system to spatiotemporal perturbations on top of the homogeneous sliding state at a velocity
V , we define the slip displacement 𝜖(x, t) ≡ ux(x, y = 0+, t)−ux(x, y = 0−, t)and the slip velocity v(x, t) ≡ 𝜖̇(x, t),
where u(x, y, t) is the displacement field and y = 0 is the fault plane (the superscript +∕− means approaching
the fault plane from the upper/lower body side, respectively). u(x, y, t) for each body satisfies the Navier-Lamé
equation∇ ⋅𝝈 = 𝜇

1−2𝜈
∇ (∇ ⋅ u)+𝜇∇2u = 𝜌 ü, with its own shear modulus𝜇, Poisson’s ratio 𝜈, and mass density

𝜌 (Landau & Lifshitz, 1986). The Cauchy stress tensor field 𝝈 was related to the displacement field u through
Hooke’s law, and each superimposed dot represents a partial time derivative.

The fault at y = 0 is assumed to be described by the rate-and-state constitutive relation 𝜏 = 𝜎xy = −f (v, 𝜙)𝜎yy .
Fault opening or interpenetration are excluded; that is, we assume uy(x, y = 0+, t) = uy(x, y = 0−, t), and
𝜎xy and 𝜎yy are continuous across the fault. The internal state field 𝜙(x, t) evolves according to 𝜙̇ = g(𝜙 u̇∕D),
with g(1) = 0 and g′(1) < 0, as in section 2. We then introduce interfacial slip perturbations of the form
𝛿𝜖 ∝ exp(Λt − ikx), where Λ is the complex growth rate and k is the wave number. The shear and normal
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Figure 1. (left) A long elastic body of height H(1), shear modulus 𝜇(1), and Poisson’s ratio 𝜈(1) sliding on top of another
long elastic body of height H(2), shear modulus 𝜇(2), and Poisson’s ratio 𝜈(2). The color gradients represent the fact that
the bodies are essentially infinitely long. The bodies are pressed one against the other by a normal stress of magnitude
𝜎0 and a homogeneous sliding state at a relative velocity V (in the figure the lower body is assumed to be stationary) is
reached by the application of a shear stress of magnitude 𝜏0 to the top and bottom edges (not shown). (right) The same
as in Figure 1 (left) except that the lower body is infinitely rigid, 𝜇(2) → ∞, the upper body is of finite length, and the
velocity V is applied to the lateral edge at x = 0. Note that the superscript (1) is unnecessary here and hence is omitted.

stress perturbations are related to 𝛿𝜖 using the solution of the quasi-static Navier-Lamé equation and take
the form 𝛿𝜎xy = −𝜇 k G1 𝛿𝜖, 𝛿𝜎yy = i𝜇 k G2 𝛿𝜖; 𝜇 is the shear modulus of the upper body. We focus on the
quasi-static regime, that is, excluding inertia, because nucleation generically takes place in this regime. The
quasi-static elastic transfer functions G1 and G2, see supporting information (Geubelle & Rice, 1995), contain
all of the information about the system’s geometry, the elastic properties of the sliding bodies, and loading
conditions (e.g., velocity versus stress boundary condition). The perturbation in the frictional resistance takes
the form 𝛿f = Λ(aΛ𝓁−𝜁V)

V(V+Λ𝓁)
𝛿𝜖, where we used 𝛿v = Λ𝛿𝜖, and the definitions 𝓁 ≡ − D

g′(1)
> 0, a ≡ v 𝜕f (v,𝜙)

𝜕v
> 0 and

𝜁 ≡ −v df (v,D∕v)
dv

= − df (v,D∕v)
d log v

(the latter two are evaluated at v = V); see supporting information. Note that
𝜁 can be both positive (velocity-weakening friction) and negative (velocity-strengthening friction) depend-
ing on the materials, the sliding velocity V , and physical conditions (e.g., temperature) (Bar-Sinai et al., 2014).
For the small slip velocities regime of interest here we assume that friction is velocity weakening; hence, we
consider 𝜁 > 0.

The linear perturbation spectrum Λ(k) is determined by the perturbation of the constitutive relation,
which reads

𝛿𝜏 = 𝛿𝜎xy = 𝜎0𝛿f − f𝛿𝜎yy . (4)

Substituting the results for 𝛿𝜎xy , 𝛿𝜎yy , and 𝛿f , we obtain an equation for Λ(k)

𝜇 k
(

G1 − ifG2

)
+ 𝜎0

Λ(aΛ𝓁 − 𝜁V)
V(V + Λ𝓁)

= 0 . (5)

Once solutions Λ(k) are obtained, instability is implied whenever ℜ[Λ(k)]> 0, corresponding to an expo-
nential growth of perturbations. Consequently, kc is determined as the largest wave number k (smallest
wavelength) for which ℜ[Λ(k)] = 0 and the critical nucleation length is estimated as Lc ≡ 2𝜋∕kc.

Solutions to equation (5) for some cases are available in the literature. Most notably, for two identical
half-spaces, we have G1 = sign(k)[2(1 − 𝜈)]−1 and G2 = 0 (see supporting information), where the latter
represents the absence of a bimaterial effect for elastically identical materials of the same shape/geometry.
Plugging these transfer functions into equation (5), one can readily obtain a known result for the critical wave
number (Rice & Ruina, 1983), which reads kc = 2(1 − 𝜈)𝜁𝜎0𝜇

−1𝓁−1. Using our proposed criterion Lc ≡ 2𝜋∕kc,
we obtain

Lc =
𝜋 𝜇 𝓁

𝜁 (1 − 𝜈)𝜎0
=⇒ 𝜂 = 𝜋

1 − 𝜈
, (6)
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where 𝜂 was defined in equation (3). This prediction for the critical nucleation length is identical to the one
in equation (3), which basically follows from dimensional considerations, once the prefactor 𝜂 = 𝜋(1 − 𝜈)−1 is
identified as done above (and the definitions of 𝓁 and 𝜁 are recalled). This value of the prefactor 𝜂 is 𝜋 times
larger than the largest value we have been able to trace in the available literature based on the conven-
tional approach; hence, we conclude that the proposed approach predicts a significantly larger nucleation
length Lc for identical half-spaces as compared to the conventional approach. Indeed, some numerical sim-
ulations of earthquake nucleation indicated that the conventional prediction with 𝜂 ≃ 1 quite significantly
underestimates the observed Lc (Lapusta & Rice, 2003).

The physical picture of nucleation developed in this section suggests that the origin of nucleation is a linear
frictional instability, while the outcome of nucleation is typically strongly nonlinear. In particular, the critical
nucleation conditions coincide with the onset of linear instability when the patch size reaches Lc, then the
slip velocity increases exponentially in the linear regime until nonlinearities set in when the slip velocity is
large enough. Finally, the patch breaks up into propagating rupture fronts. The linear stage of the instability is
expected to be rather generic, and in particular nearly independent of the exact functional form of g(⋅) (with
g(1) = 0 and g′(1) < 0) within the rate-and-state constitutive framework and of the background strength
of the fault quantified by the initial age 𝜙(t = 0), while the nonlinear stages that follow may depend on the
details of the constitutive relation and the background fault strength.

These generic properties of the onset of nucleation will be explicitly demonstrated in section 5 below. Further-
more, we note that the works of Rubin and Ampuero (2005) and Ampuero and Rubin (2008) apparently focus
on the nonlinear stages of nucleation, which is consistent with the fact that they find differences between dif-
ferent friction laws and that their patches can shrink/expand during the nonlinear evolution of the instability.
The nonlinear stages—on the route to rupture propagation—cannot take place, though, if the patch does
not reach first the size Lc determined by the linear instability. Hence, we believe that the above defined Lc is
the relevant nucleation length, and not any other length that might characterize the nonlinear evolution of
the instability.

4. Application to Bimaterial Interfaces

The general framework laid down in the previous section, unlike the conventional approach, can be naturally
applied to bimaterial interfaces. We consider then two half-spaces made of different elastic materials: the
upper half-space is characterized by a shear modulus 𝜇(1) and Poisson’s ratio 𝜈(1) and the lower half-space by
a shear modulus 𝜇(2) and Poisson’s ratio 𝜈(2). It corresponds to Figure 1 (left), once the limits H(1) → ∞ and
H(2) → ∞ are taken. Defining 𝜓 ≡ 𝜇(2)∕𝜇(1) and 𝜇 ≡ 𝜇(1) (i.e., the shear modulus of the upper body is denoted
by 𝜇, as before), the elastic transfer functions for this bimaterial system take the form (Rice et al., 2001) (see
also supporting information)

G1 = 

2𝜇
sign(k), G2 = 𝛽

2𝜇
, (7)

where

 ≡
2𝜓𝜇(1 − 𝛽2)−1

𝜓(1 − 𝜈(1)) + (1 − 𝜈 (2))
, 𝛽 ≡

𝜓(1 − 2𝜈(1)) − (1 − 2𝜈(2))
2[𝜓(1 − 𝜈 (1)) + (1 − 𝜈(2))]

. (8)

plays the role of an effective bimaterial modulus, which approaches𝜇∕(1−𝜈) in the identical materials limit,
𝜇 (1) = 𝜇(2) = 𝜇, and 𝜈(1) = 𝜈(2) = 𝜈. 𝛽 , which appears in G2 but not in G1, vanishes in the identical materials
limit (and consequently G2 vanishes in this limit as well), and hence, it quantifies the bimaterial effect.

The presence of a bimaterial contrast, 𝛽 ≠ 0, introduces a new destabilization effect associated with a cou-
pling between slip and normal stress perturbations, in addition to the destabilizing effect associated with
velocity-weakening friction, 𝜁 > 0. Hence, on physical grounds one expects Lc to decrease with increasing
bimaterial contrast. To test this, we insert G1,2 of equation (7) into equation (5) and calculate kc, obtaining the
following expression for Lc = 2𝜋∕kc

Lc =
𝜋𝓁
𝜁𝜎0

(f𝛽)2
(

1 + 𝜁∕a −
√

(1 + 𝜁∕a)2 + 4 𝜁∕a

(f𝛽)2

)
+ 2 𝜁∕a

2 𝜁∕a
. (9)
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Figure 2. The critical nucleation length Lc (normalized by Lc ) for bimaterial
interfaces separating two half-spaces, cf. equation (9), plotted as a function of
f𝛽 for various values of 𝜁∕a.

The first multiplicative contribution on the right-hand side, Lc ≡
𝜋𝓁
𝜁𝜎0

,

is obtained by replacing 𝜇∕(1 − 𝜈) in our result in equation (6) by
the effective modulus . A similar replacement has been proposed
by Rubin and Ampuero (2007) in the context of a different heuristic
estimate of the critical nucleation length for bimaterial interfaces. Con-
sequently, we plot in Figure 2 Lc of equation (9), normalized by Lc ,
as a function of f𝛽 for various values of 𝜁∕a. It is observed that Lc for
bimaterial interfaces is generically smaller than the conventional esti-
mate Lc , indicating that bimaterial interfaces may be more unstable
than previously considered. We note in passing that equation (9) remains
valid also in the presence of velocity-strengthening friction, 𝜁 < 0,
for which it predicts that for sufficiently strong bimaterial contrasts,

f𝛽 ≥
2
√
−a𝜁

a+𝜁
, instability is implied even for velocity-strengthening friction

(Rice et al., 2001).

5. Application to Finite-Size Systems and Comparison to Inertial
Finite-Element-Method Calculations

The general framework laid down in section 3, unlike the conventional approach, can be naturally applied to
finite-size systems. To demonstrate this, we consider here a system that features both finite dimensions and a
bimaterial contrast. In particular, we consider a long deformable body of height H, and of elastic constants 𝜇
and 𝜈, in rate-and-state frictional contact with a rigid substrate under the application of a compressive stress
𝜎0 and a shear stress 𝜏0. This configuration corresponds to Figure 1 (left), once the limit 𝜇(2) → ∞ is taken. In
this case, the elastic transfer functions appearing in equation (5) take the form (see supporting information)

G1 = 4(1 − 𝜈)(2Hk + sinh(2Hk))
2H2k2 + (3 − 4𝜈) cosh(2Hk) − 4𝜈(3 − 2𝜈) + 5

,

G2 =
4
(

H2k2 + (1 − 2𝜈) sinh2(Hk)
)

2H2k2 + (3 − 4𝜈) cosh(2Hk) − 4𝜈(3 − 2𝜈) + 5
.

(10)

When substituted in equation (5), we obtain a complex equation which is not analytically tractable, but rather
is amenable to numerical analysis. Let us denote the solution by kc(H) and the corresponding prediction for
the critical nucleation length by Lc(H) = 2𝜋∕kc(H).

Equation (5), with G1,2 of equation (10), does admit an analytic solution in the limit Hk → 0, that is, when the
system height H is small compared to field variations parallel to the interface characterized by a length scale
∼ k−1. In this limit, we find G1 ≃ 2Hk(1 − 𝜈)−1 and G2 ≃ 0. Using these in equation (5), we obtain

L(Hk→0)
c ≃ 2𝜋

√
2H𝜇 𝓁

𝜁 (1 − 𝜈)𝜎0
. (11)

L(Hk→0)
c predicts the small H behavior of Lc(H) and constrains any numerical calculation of Lc(H) to be quan-

titatively consistent with it in this limit. In addition, it is fully consistent with the results of Bar-Sinai et al.
(2013). We numerically calculated Lc(H) for the following set of parameters: 𝜇 = 3.1 GPa, 𝜈 = 1∕3, f = 0.41,
a = 0.0068, 𝜁 = 0.016, 𝜎0 = 1 MPa, 𝓁 = 0.5 μm, and V = 10 μm/s (the latter corresponds to an applied shear
stress 𝜏0 = f (V, 𝜙 = D∕V)𝜎0). The result is plotted in the main panel of Figure 3 (solid line). When L(Hk→0)

c of
equation (11) is superimposed on it (dashed line), perfect agreement at small H and significant deviations at
larger H are observed, as expected.

Our goal now is to quantitatively test the ability of the calculated Lc(H) to predict the critical nucleation length
in a realistic situation in which a slowly expanding creep patch spontaneously nucleates accelerating slip.
We would also like to test the theoretical prediction that Lc is nearly independent of the specific friction law
(in particular the aging versus the slip 𝜙 evolution laws) and the background fault strength (the initial value
of𝜙). To these aims, we performed inertial Finite-Element-Method (FEM) calculations that are directly relevant
for the geometrical configuration and material parameters discussed in the last two paragraphs. In particular,
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Figure 3. The theoretical prediction for the critical nucleation length Lc for a
generic rate-and-state constitutive relation as a function of the height H of
an elastic body sliding on top of a rigid substrate (solid line). The material,
interfacial, and loading parameters are given in the text. The analytic
approximation for Lc(H) in the Hk → 0 limit, cf. equation (11), is added
(dashed line). The nucleation length measured in inertial FEM simulations
of a finite elastic body of height H under sideway loading for the aging
law (see text and Figure 1 (right) for details) is shown as a function of H
(red circles). For H = 0.01 m and H = 0.05 m, Lc for the slip law is also shown
(black triangles), demonstrating small variation compared to the result for
the aging law. For H = 0.1 m, Lc for 𝜙(t = 0) = 103 s is also shown
(brown square), demonstrating small variation compared to the result for
𝜙(t = 0) = 1 s (i.e., 3 orders of magnitude difference in the initial age of the
fault). (inset) A sequence of snapshots in time (see legend) of the slip
velocity field in inertial FEM simulations for the aging law with H = 0.1 m,
demonstrating the propagation of a creep patch from the loading edge at
x = 0 into the interface. At a certain creep patch length (denoted by a
vertical dashed line and a horizontal double-head arrow) an instability
accompanied by accelerated slip takes place. This is the numerically
extracted nucleation length for this height H, as can be seen in the
main panel.

we consider a deformable body of height H which is also of finite extent in
the direction parallel to the interface and which is loaded (by an imposed
velocity V = 10 μm/s that is initiated at t = 0) at its lateral edge (defined as
x = 0), rather than at its top edge at y = H; see Figure 1 (right). The advan-
tage of this sideway loading configuration is that it naturally generates a
creep patch that slowly expands from x = 0 along the interface, cf. the
inset of Figure 3. The interface is first described by the aging rate-and-state
constitutive relation with 𝜙̇ ≃ 1−𝜙v∕D and f (v, 𝜙) ≃ f0 +a log(v∕V)+(𝜁 +
a) log(𝜙V∕D), where f0 = 0.41 and the other parameters are as above. The
initial conditions are v(t = 0) = 0 and 𝜙(t = 0) = 1s. The full constitutive
relation used in the FEM calculations, which also allows a transition from
stick (v = 0) to slip (v> 0), can be found in the supporting information
(Hecht, 2012).

Our theoretical approach predicts that the creep patch loses its stability
and develops accelerating slip upon reaching a certain critical length. This
is indeed observed in the inset of Figure 3, where the slip velocity blows
up when the creep patch reaches a certain length. We then measured the
critical length in inertial FEM calculations for different system heights H
(in addition to the inset of Figure 3, see also the supporting information
for the details of the determination of Lc in the numerical calculations)
and superimposed the results for the aging law (red circles) on the main
panel of Figure 3. It is observed that the theoretical prediction for the crit-
ical nucleation length Lc(H) is in reasonably good quantitative agreement
with the FEM results for the full range of system heights H. This major result
lends serious support to the approach developed in this letter.

In order to test whether the theoretically predicted critical nucleation
length Lc(H) is indeed nearly independent of the details of the friction law,
we repeated the above described FEM calculations for H = 0.01 m and
H = 0.05 m with the slip law instead of the aging law; that is, we used
for the slip law 𝜙̇ ≃ −(𝜙v∕D) log(𝜙v∕D) (the full constitutive relation can
again be found in the supporting information). The resulting critical nucle-

ation length (black triangles in main panel of Figure 3) for both H values exhibits only a small variation (less
than 10%) compared to the results for the aging law. Furthermore, we repeated the above described FEM cal-
culations for the aging law with H = 0.1 m, except that we increased the initial age of the fault by 3 orders of
magnitude, from 𝜙(t = 0) = 1 s to 𝜙(t = 0) = 103 s. The resulting critical nucleation length (brown square in
main panel of Figure 3) exhibits only a small variation (less than 10%) compared to the result for𝜙(t = 0) = 1 s.
These results lend strong support to the idea that the critical nucleation length Lc is determined by a linear
instability that is reasonably predicted by the procedure developed in this Letter.

6. Concluding Remarks

In this letter we developed a theoretical approach for the calculation of the critical nucleation length for accel-
erating slip Lc. The proposed approach builds on existing literature by adopting the view that nucleation is
associated with a linear frictional instability of an expanding creep patch. It deviates from the conventional
approach in the literature by replacing the problem of the stability of a spatiotemporally varying creep patch
by an effective homogeneous sliding linear stability analysis for deformable bodies, rather than invoking a
spring-block stability analysis supplemented with some fracture mechanics estimates for deformable bod-
ies. The quality of the predictions emerging from the proposed approach therefore depend on the degree by
which the creep patch can be approximated by spatially homogeneous fields. This approximation is expected
to be reasonable in many cases in light of the weak/logarithmic velocity dependence of friction in many mate-
rials. The temporal aspects of the creep patch propagation are taken into account by the requirement that it
becomes unstable upon attaining a length for which an unstable mode from the homogeneous linear stability
analysis can be first fitted into.
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The proposed approach is rather general and applies to a broad range of physical situations. For sliding along
rate-and-state frictional interfaces separating identical elastic half-spaces, it has been shown to predict a sig-
nificantly larger nucleation length compared to the conventional approach. For sliding along rate-and-state
frictional interfaces separating different elastic half-spaces, the proposed approach has been shown to pre-
dict a bimaterial weakening effect which appears to be stronger than previously hypothesized, resulting in
a smaller nucleation length. Finally, the proposed approach has been applied to finite-height systems. For
this case, the scenario of a loss of stability of an expanding creep patch has been directly demonstrated
using inertial FEM calculations and the predicted nucleation length has been shown to be in reasonably good
quantitative agreement with direct FEM results for a range of system heights. The quality of the theoretical
predictions has been shown to be nearly independent of the specific friction law used (aging versus slip laws)
and the background strength of the fault. These results offer a theoretical framework for predicting rapid slip
nucleation along faults and hence may give rise to better short-term earthquake prediction capabilities. The
proposed approach can and should be quantitatively tested in a wide variety of interfacial rupture nucleation
problems, using both theoretical tools and extensive numerical simulations.
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