000845043 001__ 845043
000845043 005__ 20210129233222.0
000845043 0247_ $$2doi$$a10.1021/acs.langmuir.7b03733
000845043 0247_ $$2ISSN$$a0743-7463
000845043 0247_ $$2ISSN$$a1520-5827
000845043 0247_ $$2pmid$$apmid:29303591
000845043 0247_ $$2WOS$$aWOS:000424070400013
000845043 0247_ $$2altmetric$$aaltmetric:31907807
000845043 037__ $$aFZJ-2018-02372
000845043 082__ $$a670
000845043 1001_ $$0P:(DE-HGF)0$$aBick, D. S.$$b0
000845043 245__ $$aDegradation Kinetics during Oxygen Electrocatalysis on Perovskite-Based Surfaces in Alkaline Media
000845043 260__ $$aWashington, DC$$bACS Publ.$$c2018
000845043 3367_ $$2DRIVER$$aarticle
000845043 3367_ $$2DataCite$$aOutput Types/Journal article
000845043 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523540697_13022
000845043 3367_ $$2BibTeX$$aARTICLE
000845043 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845043 3367_ $$00$$2EndNote$$aJournal Article
000845043 520__ $$aThe oxygen evolution reaction (OER) during alkaline water electrolysis is the bottleneck of water splitting. Perovskite materials have been particularly proposed as good and economically reasonable electrocatalysts for the OER, showing promise and advantages with respect to classic metallic electrodes. However, the degradation of perovskites during catalysis limits their service lifetime. Recently, the material BaCo0.98Ti0.02O3−δ:Co3O4 was shown to be electrocatalytically and chemically stable during water electrolysis even under industrially relevant conditions. The lifetime of this perovskite-based system is prolonged by a factor of 10 in comparison to that of Pr0.2Ba0.8CoO3−δ and is comparable to that of industrially applied electrodes. Here we report on the degradation kinetics of several OER catalysts at room temperature, comparatively studied by monitoring the oxygen evolution at microelectrodes. A decrease in the reaction rate within a maximum of 60 s is observed, which is related to chemical and/or structural changes at the oxide surface.
000845043 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000845043 588__ $$aDataset connected to CrossRef
000845043 7001_ $$0P:(DE-HGF)0$$aKrebs, T. B.$$b1
000845043 7001_ $$0P:(DE-HGF)0$$aKleimaier, D.$$b2
000845043 7001_ $$0P:(DE-HGF)0$$aZurhelle, A. F.$$b3
000845043 7001_ $$0P:(DE-Juel1)130982$$aStaikov, G.$$b4
000845043 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5
000845043 7001_ $$0P:(DE-Juel1)131014$$aValov, I.$$b6$$eCorresponding author
000845043 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.7b03733$$gVol. 34, no. 4, p. 1347 - 1352$$n4$$p1347 - 1352$$tLangmuir$$v34$$x1520-5827$$y2018
000845043 8564_ $$uhttps://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.pdf$$yRestricted
000845043 8564_ $$uhttps://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.gif?subformat=icon$$xicon$$yRestricted
000845043 8564_ $$uhttps://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845043 8564_ $$uhttps://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845043 8564_ $$uhttps://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845043 8564_ $$uhttps://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845043 909CO $$ooai:juser.fz-juelich.de:845043$$pVDB
000845043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000845043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b6$$kFZJ
000845043 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000845043 9141_ $$y2018
000845043 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845043 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845043 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845043 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845043 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2015
000845043 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845043 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845043 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845043 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845043 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845043 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845043 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845043 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845043 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000845043 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000845043 980__ $$ajournal
000845043 980__ $$aVDB
000845043 980__ $$aI:(DE-Juel1)PGI-7-20110106
000845043 980__ $$aI:(DE-82)080009_20140620
000845043 980__ $$aUNRESTRICTED