001     845043
005     20210129233222.0
024 7 _ |a 10.1021/acs.langmuir.7b03733
|2 doi
024 7 _ |a 0743-7463
|2 ISSN
024 7 _ |a 1520-5827
|2 ISSN
024 7 _ |a pmid:29303591
|2 pmid
024 7 _ |a WOS:000424070400013
|2 WOS
024 7 _ |a altmetric:31907807
|2 altmetric
037 _ _ |a FZJ-2018-02372
082 _ _ |a 670
100 1 _ |a Bick, D. S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Degradation Kinetics during Oxygen Electrocatalysis on Perovskite-Based Surfaces in Alkaline Media
260 _ _ |a Washington, DC
|c 2018
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1523540697_13022
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The oxygen evolution reaction (OER) during alkaline water electrolysis is the bottleneck of water splitting. Perovskite materials have been particularly proposed as good and economically reasonable electrocatalysts for the OER, showing promise and advantages with respect to classic metallic electrodes. However, the degradation of perovskites during catalysis limits their service lifetime. Recently, the material BaCo0.98Ti0.02O3−δ:Co3O4 was shown to be electrocatalytically and chemically stable during water electrolysis even under industrially relevant conditions. The lifetime of this perovskite-based system is prolonged by a factor of 10 in comparison to that of Pr0.2Ba0.8CoO3−δ and is comparable to that of industrially applied electrodes. Here we report on the degradation kinetics of several OER catalysts at room temperature, comparatively studied by monitoring the oxygen evolution at microelectrodes. A decrease in the reaction rate within a maximum of 60 s is observed, which is related to chemical and/or structural changes at the oxide surface.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Krebs, T. B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kleimaier, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zurhelle, A. F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Staikov, G.
|0 P:(DE-Juel1)130982
|b 4
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
700 1 _ |a Valov, I.
|0 P:(DE-Juel1)131014
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.langmuir.7b03733
|g Vol. 34, no. 4, p. 1347 - 1352
|0 PERI:(DE-600)2005937-1
|n 4
|p 1347 - 1352
|t Langmuir
|v 34
|y 2018
|x 1520-5827
856 4 _ |u https://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845043/files/acs.langmuir.7b03733.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845043
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131014
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANGMUIR : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21