000845045 001__ 845045
000845045 005__ 20210129233222.0
000845045 0247_ $$2doi$$a10.1002/adma.201703261
000845045 0247_ $$2ISSN$$a0935-9648
000845045 0247_ $$2ISSN$$a1521-4095
000845045 0247_ $$2WOS$$aWOS:000424485100003
000845045 0247_ $$2altmetric$$aaltmetric:31398505
000845045 0247_ $$2pmid$$apmid:29314325
000845045 037__ $$aFZJ-2018-02374
000845045 082__ $$a540
000845045 1001_ $$0P:(DE-HGF)0$$aNayak, Alpana$$b0
000845045 245__ $$aNanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots
000845045 260__ $$aWeinheim$$bWiley-VCH$$c2018
000845045 3367_ $$2DRIVER$$aarticle
000845045 3367_ $$2DataCite$$aOutput Types/Journal article
000845045 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523533677_13026
000845045 3367_ $$2BibTeX$$aARTICLE
000845045 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845045 3367_ $$00$$2EndNote$$aJournal Article
000845045 520__ $$aControlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid‐state nanoionics for applications in energy storage, sensing, and brain‐type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α‐Ag2+δS nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic‐scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer
000845045 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000845045 588__ $$aDataset connected to CrossRef
000845045 7001_ $$0P:(DE-HGF)0$$aUnayama, Satomi$$b1
000845045 7001_ $$0P:(DE-HGF)0$$aTai, Seishiro$$b2
000845045 7001_ $$0P:(DE-HGF)0$$aTsuruoka, Tohru$$b3
000845045 7001_ $$0P:(DE-HGF)0$$aAono, Masakazu$$b4
000845045 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5
000845045 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b6
000845045 7001_ $$0P:(DE-HGF)0$$aHasegawa, Tsuyoshi$$b7$$eCorresponding author
000845045 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201703261$$gVol. 30, no. 6, p. 1703261 -$$n6$$p1703261 -$$tAdvanced materials$$v30$$x0935-9648$$y2018
000845045 8564_ $$uhttps://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.pdf$$yRestricted
000845045 8564_ $$uhttps://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.gif?subformat=icon$$xicon$$yRestricted
000845045 8564_ $$uhttps://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845045 8564_ $$uhttps://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845045 8564_ $$uhttps://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845045 8564_ $$uhttps://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845045 909CO $$ooai:juser.fz-juelich.de:845045$$pVDB
000845045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000845045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b6$$kFZJ
000845045 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000845045 9141_ $$y2018
000845045 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845045 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845045 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845045 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2015
000845045 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845045 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845045 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845045 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845045 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845045 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845045 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845045 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV MATER : 2015
000845045 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000845045 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000845045 980__ $$ajournal
000845045 980__ $$aVDB
000845045 980__ $$aI:(DE-Juel1)PGI-7-20110106
000845045 980__ $$aI:(DE-82)080009_20140620
000845045 980__ $$aUNRESTRICTED