001     845045
005     20210129233222.0
024 7 _ |a 10.1002/adma.201703261
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a WOS:000424485100003
|2 WOS
024 7 _ |a altmetric:31398505
|2 altmetric
024 7 _ |a pmid:29314325
|2 pmid
037 _ _ |a FZJ-2018-02374
082 _ _ |a 540
100 1 _ |a Nayak, Alpana
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1523533677_13026
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid‐state nanoionics for applications in energy storage, sensing, and brain‐type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α‐Ag2+δS nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic‐scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Unayama, Satomi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tai, Seishiro
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tsuruoka, Tohru
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Aono, Masakazu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 6
700 1 _ |a Hasegawa, Tsuyoshi
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/adma.201703261
|g Vol. 30, no. 6, p. 1703261 -
|0 PERI:(DE-600)1474949-x
|n 6
|p 1703261 -
|t Advanced materials
|v 30
|y 2018
|x 0935-9648
856 4 _ |u https://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845045/files/Nayak_et_al-2018-Advanced_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845045
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131014
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV MATER : 2015
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21