001     845064
005     20210129233244.0
024 7 _ |a 10.1021/acssuschemeng.7b04165
|2 doi
024 7 _ |a WOS:000431927500024
|2 WOS
037 _ _ |a FZJ-2018-02389
082 _ _ |a 540
100 1 _ |a Marx, Josefine
|0 P:(DE-Juel1)130473
|b 0
|u fzj
245 _ _ |a Comparative Life Cycle Assessment of NdFeB Permanent Magnet Production from Different Rare Earth Deposits
260 _ _ |a Washington, DC
|c 2018
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1526450938_24627
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neodymium, praseodymium, and dysprosium are rare earth elements often used in high performance magnets. Environmental impacts during the production of a 1 kg of neodymium iron boron (NdFeB) magnet from three major deposits are quantified using life cycle assessment (LCA). The scope of the assessment includes the largest rare earth oxide (REO) production in Bayan Obo (China), the second largest at a mine in Mount Weld (Australia), and a third mine in Mountain Pass (U.S.A.) that closed production in 2015. Consecutively, impacts from metal refining and final magnet production are added. Environmental impacts along the magnet production life cycle are dominated by the production of rare earth components (50–99.9%). Using REOs from the American mine shows the best overall environmental performance due to improved handling of chemicals. The biggest differences from the worst Chinese pathway can be found in freshwater and terrestrial ecotoxicity, acidification, freshwater eutrophication, particulate matter, and human toxicity. The smallest differences are observed for climate change, resource depletion, and marine eutrophication. For the first time, an LCA for the three largest rare earth producers was performed under the same frame of conditions and methodological assumptions. This approach is a step toward getting a consistent picture of environmental impacts.
536 _ _ |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|0 G:(DE-HGF)POF3-153
|c POF3-153
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schreiber, Andrea
|0 P:(DE-Juel1)130483
|b 1
|e Corresponding author
700 1 _ |a Zapp, Petra
|0 P:(DE-Juel1)130493
|b 2
|u fzj
700 1 _ |a Walachowicz, Frank
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1021/acssuschemeng.7b04165
|g p. acssuschemeng.7b04165
|0 PERI:(DE-600)2695697-4
|n 5
|p 5858–5867
|t ACS sustainable chemistry & engineering
|v 6
|y 2018
|x 2168-0485
856 4 _ |u https://juser.fz-juelich.de/record/845064/files/acssuschemeng.7b04165.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845064/files/acssuschemeng.7b04165.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845064/files/acssuschemeng.7b04165.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845064/files/acssuschemeng.7b04165.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845064/files/acssuschemeng.7b04165.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845064/files/acssuschemeng.7b04165.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845064
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130473
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130493
913 1 _ |a DE-HGF
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21