000845065 001__ 845065
000845065 005__ 20210131030747.0
000845065 0247_ $$2doi$$a10.1016/j.resconrec.2017.12.006
000845065 0247_ $$2ISSN$$a0921-3449
000845065 0247_ $$2ISSN$$a1879-0658
000845065 0247_ $$2WOS$$aWOS:000423005400030
000845065 0247_ $$2altmetric$$aaltmetric:42059403
000845065 037__ $$aFZJ-2018-02390
000845065 082__ $$a690
000845065 1001_ $$0P:(DE-Juel1)130493$$aZapp, Petra$$b0$$eCorresponding author$$ufzj
000845065 245__ $$aComparison of dysprosium production from different resources by life cycle assessment
000845065 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000845065 3367_ $$2DRIVER$$aarticle
000845065 3367_ $$2DataCite$$aOutput Types/Journal article
000845065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1526456489_24899
000845065 3367_ $$2BibTeX$$aARTICLE
000845065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845065 3367_ $$00$$2EndNote$$aJournal Article
000845065 520__ $$aRare earth elements (REEs) are essential for low carbon technologies. Production of dysprosium (Dy) is mostly induced by rare earth magnets demand (approximately (approx.) 95% of total demand). It is almost exclusively supplied by ion adsorption clays (IACs) of Southern China. Other sources, such as bastnaesite/monazite or eudialyte ores, are also conceivable. Bastnaesite/monazite ores usually show low dysprosium contents. So far, hardly any REEs from eudialyte ores have been processed. The Norra Kärr deposit (Sweden) is one of the largest, highest grade, non-Chinese heavy REE deposits in Europe. Almost all studies on environmental effects of REEs production investigate the bastnaesite/monazite route. Recently, a first life cycle assessment (LCA) of IAC in-situ leaching was published. The present study broadens the scope firstly by including additional beneficiation and separation processes and subsequent production of the single metal dysprosium. Secondly, a comparison of the environmental performance of three production routes from different resources, IAC, bastnaesite/monazite and eudialyte is investigated. The results show that the environmental performance based on eudialyte is the best. The results of IAC and bastnaesite/monazite routes are comparable, but only for low amounts of leaching agent for IACs. For all three minerals freshwater ecotoxicity, human toxicity as well as eutrophication marine and freshwater are important environmental effects. In case of IAC marine eutrophication has the largest share due to in-situ leaching. This paper allows for the first time a straight comparison of Dy production based on three different minerals due to a consistent methodological frame, basic assumptions and parameters.
000845065 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000845065 588__ $$aDataset connected to CrossRef
000845065 7001_ $$0P:(DE-Juel1)130473$$aMarx, Josefine$$b1$$ufzj
000845065 7001_ $$0P:(DE-Juel1)130483$$aSchreiber, Andrea$$b2$$ufzj
000845065 7001_ $$0P:(DE-HGF)0$$aFriedrich, Bernd$$b3
000845065 7001_ $$0P:(DE-HGF)0$$aVoßenkaul, Daniel$$b4
000845065 773__ $$0PERI:(DE-600)1498716-8$$a10.1016/j.resconrec.2017.12.006$$gVol. 130, p. 248 - 259$$p248 - 259$$tResources, conservation and recycling$$v130$$x0921-3449$$y2018
000845065 8564_ $$uhttps://juser.fz-juelich.de/record/845065/files/1-s2.0-S0921344917304378-main.pdf$$yRestricted
000845065 8564_ $$uhttps://juser.fz-juelich.de/record/845065/files/1-s2.0-S0921344917304378-main.gif?subformat=icon$$xicon$$yRestricted
000845065 8564_ $$uhttps://juser.fz-juelich.de/record/845065/files/1-s2.0-S0921344917304378-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845065 8564_ $$uhttps://juser.fz-juelich.de/record/845065/files/1-s2.0-S0921344917304378-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845065 8564_ $$uhttps://juser.fz-juelich.de/record/845065/files/1-s2.0-S0921344917304378-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845065 8564_ $$uhttps://juser.fz-juelich.de/record/845065/files/1-s2.0-S0921344917304378-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845065 909CO $$ooai:juser.fz-juelich.de:845065$$pVDB
000845065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130493$$aForschungszentrum Jülich$$b0$$kFZJ
000845065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130473$$aForschungszentrum Jülich$$b1$$kFZJ
000845065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130483$$aForschungszentrum Jülich$$b2$$kFZJ
000845065 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000845065 9141_ $$y2018
000845065 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845065 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRESOUR CONSERV RECY : 2015
000845065 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845065 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845065 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845065 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845065 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000845065 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845065 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845065 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845065 920__ $$lyes
000845065 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000845065 980__ $$ajournal
000845065 980__ $$aVDB
000845065 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000845065 980__ $$aUNRESTRICTED