000845113 001__ 845113
000845113 005__ 20210129233255.0
000845113 0247_ $$2doi$$a10.1073/pnas.1720542115
000845113 0247_ $$2ISSN$$a0027-8424
000845113 0247_ $$2ISSN$$a1091-6490
000845113 0247_ $$2Handle$$a2128/18101
000845113 0247_ $$2pmid$$apmid:29588418
000845113 0247_ $$2WOS$$aWOS:000429540300005
000845113 0247_ $$2altmetric$$aaltmetric:34913429
000845113 037__ $$aFZJ-2018-02432
000845113 082__ $$a000
000845113 1001_ $$0P:(DE-HGF)0$$aYanez Arteta, Marianna$$b0$$eCorresponding author
000845113 245__ $$aSuccessful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles
000845113 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2018
000845113 3367_ $$2DRIVER$$aarticle
000845113 3367_ $$2DataCite$$aOutput Types/Journal article
000845113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523968592_3723
000845113 3367_ $$2BibTeX$$aARTICLE
000845113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845113 3367_ $$00$$2EndNote$$aJournal Article
000845113 520__ $$aThe development of safe and efficacious gene vectors has limited greatly the potential for therapeutic treatments based on messenger RNA (mRNA). Lipid nanoparticles (LNPs) formed by an ionizable cationic lipid (here DLin-MC3-DMA), helper lipids (distearoylphosphatidylcholine, DSPC, and cholesterol), and a poly(ethylene glycol) (PEG) lipid have been identified as very promising delivery vectors of short interfering RNA (siRNA) in different clinical phases; however, delivery of high-molecular weight RNA has been proven much more demanding. Herein we elucidate the structure of hEPO modified mRNA-containing LNPs of different sizes and show how structural differences affect transfection of human adipocytes and hepatocytes, two clinically relevant cell types. Employing small-angle scattering, we demonstrate that LNPs have a disordered inverse hexagonal internal structure with a characteristic distance around 6 nm in presence of mRNA, whereas LNPs containing no mRNA do not display this structure. Furthermore, using contrast variation small-angle neutron scattering, we show that one of the lipid components, DSPC, is localized mainly at the surface of mRNA-containing LNPs. By varying LNP size and surface composition we demonstrate that both size and structure have significant influence on intracellular protein production. As an example, in both human adipocytes and hepatocytes, protein expression levels for 130 nm LNPs can differ as much as 50-fold depending on their surface characteristics, likely due to a difference in the ability of LNP fusion with the early endosome membrane. We consider these discoveries to be fundamental and opening up new possibilities for rational design of synthetic nanoscopic vehicles for mRNA delivery.
000845113 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000845113 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000845113 588__ $$aDataset connected to CrossRef
000845113 65027 $$0V:(DE-MLZ)SciArea-190$$2V:(DE-HGF)$$aMedicine$$x0
000845113 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x1
000845113 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000845113 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000845113 7001_ $$0P:(DE-HGF)0$$aKjellman, Tomas$$b1
000845113 7001_ $$0P:(DE-HGF)0$$aBartesaghi, Stefano$$b2
000845113 7001_ $$0P:(DE-HGF)0$$aWallin, Simonetta$$b3
000845113 7001_ $$0P:(DE-HGF)0$$aWu, Xiaoqiu$$b4
000845113 7001_ $$0P:(DE-HGF)0$$aKvist, Alexander J.$$b5
000845113 7001_ $$0P:(DE-HGF)0$$aDabkowska, Aleksandra$$b6
000845113 7001_ $$0P:(DE-Juel1)145431$$aSzekely, Noemi$$b7
000845113 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b8
000845113 7001_ $$00000-0001-7403-1350$$aBergenholtz, Johan$$b9
000845113 7001_ $$0P:(DE-HGF)0$$aLindfors, Lennart$$b10$$eCorresponding author
000845113 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1720542115$$gVol. 115, no. 15, p. E3351 - E3360$$n15$$pE3351 - E3360$$tProceedings of the National Academy of Sciences of the United States of America$$v115$$x1091-6490$$y2018
000845113 8564_ $$uhttps://juser.fz-juelich.de/record/845113/files/1720542115.full.pdf$$yOpenAccess
000845113 8564_ $$uhttps://juser.fz-juelich.de/record/845113/files/1720542115.full.gif?subformat=icon$$xicon$$yOpenAccess
000845113 8564_ $$uhttps://juser.fz-juelich.de/record/845113/files/1720542115.full.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845113 8564_ $$uhttps://juser.fz-juelich.de/record/845113/files/1720542115.full.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845113 8564_ $$uhttps://juser.fz-juelich.de/record/845113/files/1720542115.full.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845113 8564_ $$uhttps://juser.fz-juelich.de/record/845113/files/1720542115.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845113 909CO $$ooai:juser.fz-juelich.de:845113$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000845113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b8$$kFZJ
000845113 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000845113 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000845113 9141_ $$y2018
000845113 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845113 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000845113 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845113 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000845113 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2015
000845113 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000845113 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2015
000845113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845113 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845113 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845113 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845113 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845113 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845113 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000845113 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845113 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000845113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845113 920__ $$lyes
000845113 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000845113 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000845113 980__ $$ajournal
000845113 980__ $$aVDB
000845113 980__ $$aUNRESTRICTED
000845113 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000845113 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000845113 9801_ $$aFullTexts