000845126 001__ 845126
000845126 005__ 20240711085642.0
000845126 0247_ $$2doi$$a10.1039/C8EE00227D
000845126 0247_ $$2ISSN$$a1754-5692
000845126 0247_ $$2ISSN$$a1754-5706
000845126 0247_ $$2WOS$$aWOS:000432599100014
000845126 0247_ $$2altmetric$$aaltmetric:38955471
000845126 037__ $$aFZJ-2018-02445
000845126 082__ $$a690
000845126 1001_ $$00000-0002-1644-9473$$aKim, U.-H.$$b0
000845126 245__ $$aPushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries131
000845126 260__ $$aCambridge$$bRSC Publ.$$c2018
000845126 3367_ $$2DRIVER$$aarticle
000845126 3367_ $$2DataCite$$aOutput Types/Journal article
000845126 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1529319259_32180
000845126 3367_ $$2BibTeX$$aARTICLE
000845126 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845126 3367_ $$00$$2EndNote$$aJournal Article
000845126 520__ $$aDevelopment of advanced high energy density lithium ion batteries is important for promoting electromobility. Making electric vehicles attractive and competitive compared to conventional automobiles depends on the availability of reliable, safe, high power, and highly energetic batteries whose components are abundant and cost effective. Nickel rich Li[NixCoyMn1−x−y]O2 layered cathode materials (x > 0.5) are of interest because they can provide very high specific capacity without pushing charging potentials to levels that oxidize the electrolyte solutions. However, these cathode materials suffer from stability problems. We discovered that doping these materials with tungsten (1 mol%) remarkably increases their stability due to a partial layered to cubic (rock salt) phase transition. We demonstrate herein highly stable Li ion battery prototypes consisting of tungsten-stabilized Ni rich cathode materials (x > 0.9) with specific capacities >220 mA h g-1. This development can increase the energy density of Li ion batteries more than 30% above the state of the art without compromising durability.
000845126 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000845126 588__ $$aDataset connected to CrossRef
000845126 7001_ $$0P:(DE-HGF)0$$aJun, D.-W.$$b1
000845126 7001_ $$0P:(DE-HGF)0$$aPark, K.-J.$$b2
000845126 7001_ $$0P:(DE-HGF)0$$aAurbach, D.$$b3
000845126 7001_ $$0P:(DE-HGF)0$$aMajor, D. T.$$b4
000845126 7001_ $$0P:(DE-HGF)0$$aGoobes, G.$$b5
000845126 7001_ $$00000-0001-9456-7806$$aDixit, M.$$b6
000845126 7001_ $$0P:(DE-HGF)0$$aLeifer, N.$$b7
000845126 7001_ $$0P:(DE-HGF)0$$aWang, C. M.$$b8
000845126 7001_ $$0P:(DE-HGF)0$$aYan, P.$$b9
000845126 7001_ $$00000-0003-1841-5418$$aAhn, D.$$b10
000845126 7001_ $$00000-0001-7401-717X$$aKim, K.-H.$$b11
000845126 7001_ $$0P:(DE-HGF)0$$aYoon, C. S.$$b12
000845126 7001_ $$00000-0003-2005-0251$$aSun, Y.-K.$$b13$$eCorresponding author
000845126 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b14
000845126 7001_ $$0P:(DE-HGF)0$$aZhang, Q.$$b15
000845126 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/C8EE00227D$$gp. 10.1039.C8EE00227D$$p1271-1279$$tEnergy & environmental science$$v11$$x1754-5706$$y2018
000845126 8564_ $$uhttps://juser.fz-juelich.de/record/845126/files/c8ee00227d.pdf$$yRestricted
000845126 8564_ $$uhttps://juser.fz-juelich.de/record/845126/files/c8ee00227d.gif?subformat=icon$$xicon$$yRestricted
000845126 8564_ $$uhttps://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845126 8564_ $$uhttps://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845126 8564_ $$uhttps://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845126 909CO $$ooai:juser.fz-juelich.de:845126$$pVDB
000845126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b14$$kFZJ
000845126 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000845126 9141_ $$y2018
000845126 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000845126 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2015
000845126 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845126 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845126 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845126 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845126 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845126 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845126 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845126 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000845126 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845126 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845126 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bENERG ENVIRON SCI : 2015
000845126 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000845126 980__ $$ajournal
000845126 980__ $$aVDB
000845126 980__ $$aI:(DE-Juel1)IEK-1-20101013
000845126 980__ $$aUNRESTRICTED
000845126 981__ $$aI:(DE-Juel1)IMD-2-20101013