001     845126
005     20240711085642.0
024 7 _ |a 10.1039/C8EE00227D
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a WOS:000432599100014
|2 WOS
024 7 _ |a altmetric:38955471
|2 altmetric
037 _ _ |a FZJ-2018-02445
082 _ _ |a 690
100 1 _ |a Kim, U.-H.
|0 0000-0002-1644-9473
|b 0
245 _ _ |a Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries131
260 _ _ |a Cambridge
|c 2018
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529319259_32180
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Development of advanced high energy density lithium ion batteries is important for promoting electromobility. Making electric vehicles attractive and competitive compared to conventional automobiles depends on the availability of reliable, safe, high power, and highly energetic batteries whose components are abundant and cost effective. Nickel rich Li[NixCoyMn1−x−y]O2 layered cathode materials (x > 0.5) are of interest because they can provide very high specific capacity without pushing charging potentials to levels that oxidize the electrolyte solutions. However, these cathode materials suffer from stability problems. We discovered that doping these materials with tungsten (1 mol%) remarkably increases their stability due to a partial layered to cubic (rock salt) phase transition. We demonstrate herein highly stable Li ion battery prototypes consisting of tungsten-stabilized Ni rich cathode materials (x > 0.9) with specific capacities >220 mA h g-1. This development can increase the energy density of Li ion batteries more than 30% above the state of the art without compromising durability.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jun, D.-W.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Park, K.-J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Aurbach, D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Major, D. T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Goobes, G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dixit, M.
|0 0000-0001-9456-7806
|b 6
700 1 _ |a Leifer, N.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wang, C. M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Yan, P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ahn, D.
|0 0000-0003-1841-5418
|b 10
700 1 _ |a Kim, K.-H.
|0 0000-0001-7401-717X
|b 11
700 1 _ |a Yoon, C. S.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Sun, Y.-K.
|0 0000-0003-2005-0251
|b 13
|e Corresponding author
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 14
700 1 _ |a Zhang, Q.
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1039/C8EE00227D
|g p. 10.1039.C8EE00227D
|0 PERI:(DE-600)2439879-2
|p 1271-1279
|t Energy & environmental science
|v 11
|y 2018
|x 1754-5706
856 4 _ |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845126
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG ENVIRON SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ENERG ENVIRON SCI : 2015
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21