Hauptseite > Publikationsdatenbank > Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries131 > print |
001 | 845126 | ||
005 | 20240711085642.0 | ||
024 | 7 | _ | |a 10.1039/C8EE00227D |2 doi |
024 | 7 | _ | |a 1754-5692 |2 ISSN |
024 | 7 | _ | |a 1754-5706 |2 ISSN |
024 | 7 | _ | |a WOS:000432599100014 |2 WOS |
024 | 7 | _ | |a altmetric:38955471 |2 altmetric |
037 | _ | _ | |a FZJ-2018-02445 |
082 | _ | _ | |a 690 |
100 | 1 | _ | |a Kim, U.-H. |0 0000-0002-1644-9473 |b 0 |
245 | _ | _ | |a Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries131 |
260 | _ | _ | |a Cambridge |c 2018 |b RSC Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1529319259_32180 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Development of advanced high energy density lithium ion batteries is important for promoting electromobility. Making electric vehicles attractive and competitive compared to conventional automobiles depends on the availability of reliable, safe, high power, and highly energetic batteries whose components are abundant and cost effective. Nickel rich Li[NixCoyMn1−x−y]O2 layered cathode materials (x > 0.5) are of interest because they can provide very high specific capacity without pushing charging potentials to levels that oxidize the electrolyte solutions. However, these cathode materials suffer from stability problems. We discovered that doping these materials with tungsten (1 mol%) remarkably increases their stability due to a partial layered to cubic (rock salt) phase transition. We demonstrate herein highly stable Li ion battery prototypes consisting of tungsten-stabilized Ni rich cathode materials (x > 0.9) with specific capacities >220 mA h g-1. This development can increase the energy density of Li ion batteries more than 30% above the state of the art without compromising durability. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Jun, D.-W. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Park, K.-J. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Aurbach, D. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Major, D. T. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Goobes, G. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Dixit, M. |0 0000-0001-9456-7806 |b 6 |
700 | 1 | _ | |a Leifer, N. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Wang, C. M. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Yan, P. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Ahn, D. |0 0000-0003-1841-5418 |b 10 |
700 | 1 | _ | |a Kim, K.-H. |0 0000-0001-7401-717X |b 11 |
700 | 1 | _ | |a Yoon, C. S. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Sun, Y.-K. |0 0000-0003-2005-0251 |b 13 |e Corresponding author |
700 | 1 | _ | |a Kaghazchi, Payam |0 P:(DE-Juel1)174502 |b 14 |
700 | 1 | _ | |a Zhang, Q. |0 P:(DE-HGF)0 |b 15 |
773 | _ | _ | |a 10.1039/C8EE00227D |g p. 10.1039.C8EE00227D |0 PERI:(DE-600)2439879-2 |p 1271-1279 |t Energy & environmental science |v 11 |y 2018 |x 1754-5706 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/845126/files/c8ee00227d.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:845126 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)174502 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENERG ENVIRON SCI : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ENERG ENVIRON SCI : 2015 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|