001     845143
005     20240708132712.0
024 7 _ |a 10.1063/1.5007928
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 2128/18099
|2 Handle
024 7 _ |a pmid:29679970
|2 pmid
024 7 _ |a WOS:000430485700012
|2 WOS
037 _ _ |a FZJ-2018-02453
082 _ _ |a 540
100 1 _ |a Kubacki, J.
|0 0000-0001-9596-4539
|b 0
|e Corresponding author
245 _ _ |a Impact of Fe doping on the electronic structure of SrTiO 3 thin films determined by resonant photoemission
260 _ _ |a Melville, NY
|c 2018
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547046731_3110
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Epitaxial thin films of Fe doped SrTiO3 have been studied by the use of resonant photoemission. This technique allowed us to identify contributions of the Fe and Ti originating electronic states to the valence band. Two valence states of iron Fe2+ and Fe3+, detected on the base of x-ray absorption studies spectra, appeared to form quite different contributions to the valence band of SrTiO3. The electronic states within the in-gap region can be attributed to Fe and Ti ions. The Fe2+ originating states which can be connected to the presence of oxygen vacancies form a broad band reaching binding energies of about 0.5 eV below the conduction band, while Fe3+ states form in the gap a sharp feature localized just above the top of the valence band. These structures were also confirmed by calculations performed with the use of the FP-LAPW/APW+lo method including Coulomb correlations within the d shell. It has been shown that Fe doping induced Ti originating states in the energy gap which can be related to the hybridization of Ti and Fe 3d orbitals.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kajewski, D.
|0 0000-0002-0196-7489
|b 1
700 1 _ |a Goraus, J.
|0 0000-0002-7711-727X
|b 2
700 1 _ |a Szot, K.
|0 P:(DE-Juel1)130993
|b 3
700 1 _ |a Koehl, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lenser, Ch.
|0 P:(DE-Juel1)138081
|b 5
700 1 _ |a Dittmann, R.
|0 P:(DE-Juel1)130620
|b 6
700 1 _ |a Szade, J.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1063/1.5007928
|g Vol. 148, no. 15, p. 154702 -
|0 PERI:(DE-600)1473050-9
|n 15
|p 154702 -
|t The journal of chemical physics
|v 148
|y 2018
|x 1089-7690
856 4 _ |u https://juser.fz-juelich.de/record/845143/files/1.5007928.pdf
|y Published on 2018-04-16. Available in OpenAccess from 2019-04-16.
856 4 _ |u https://juser.fz-juelich.de/record/845143/files/1.5007928.gif?subformat=icon
|x icon
|y Published on 2018-04-16. Available in OpenAccess from 2019-04-16.
856 4 _ |u https://juser.fz-juelich.de/record/845143/files/1.5007928.jpg?subformat=icon-1440
|x icon-1440
|y Published on 2018-04-16. Available in OpenAccess from 2019-04-16.
856 4 _ |u https://juser.fz-juelich.de/record/845143/files/1.5007928.jpg?subformat=icon-180
|x icon-180
|y Published on 2018-04-16. Available in OpenAccess from 2019-04-16.
856 4 _ |u https://juser.fz-juelich.de/record/845143/files/1.5007928.jpg?subformat=icon-640
|x icon-640
|y Published on 2018-04-16. Available in OpenAccess from 2019-04-16.
856 4 _ |u https://juser.fz-juelich.de/record/845143/files/1.5007928.pdf?subformat=pdfa
|x pdfa
|y Published on 2018-04-16. Available in OpenAccess from 2019-04-16.
909 C O |o oai:juser.fz-juelich.de:845143
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21