
Parallel Computation of Component Trees
on Distributed Memory Machines

Markus G€otz , Gabriele Cavallaro ,Member, IEEE, Thierry G�eraud ,Member, IEEE,

Matthias Book , and Morris Riedel,Member, IEEE

Abstract—Component trees are region-based representations that encode the inclusion relationship of the threshold sets of an image.

These representations are one of the most promising strategies for the analysis and the interpretation of spatial information of complex

scenes as they allow the simple and efficient implementation of connected filters. This work proposes a new efficient hybrid algorithm

for the parallel computation of two particular component trees—the max- and min-tree—in shared and distributed memory

environments. For the node-local computation a modified version of the flooding-based algorithm of Salembier is employed. A novel

tuple-based merging scheme allows to merge the acquired partial images into a globally correct view. Using the proposed approach a

speed-up of up to 44.88 using 128 processing cores on eight-bit gray-scale images could be achieved. This is more than a five-fold

increase over the state-of-the-art shared-memory algorithm, while also requiring only one-thirty-second of the memory.

Index Terms—Component-trees, threshold decomposition, max-tree, connected component labeling, high-performance computing,

hybrid application, MPI, multithreading

Ç

1 INTRODUCTION

S INCE the 1960s, mathematical morphology [1], [2] has
become increasingly popular in the image processing

community mainly due to its proven utility and rigorous
mathematical description. The mathematical morphology
framework provides a set of powerful operators for analyz-
ing the spatial domain of images at the region-level—i.e., con-
nected components—based on tree representations, called
thresholds decompositions [3], [4]. These are based on tree
representations of images which can be divided into two
main groups [5]: hierarchies of segmentation—i.e., hierarchy
of image partitions such as minimum spanning trees [6],
alpha-trees [7], binary partition trees [8]—and threshold
decompositions—i.e., hierarchy of regions such as compo-
nent trees [4], [9], tree of shapes (ToS) [10] and multivariate
tree of shapes [11]). Generally, tree structures are often con-
sidered richer in descriptive ability since they can be
exploited for breaking down images into their fundamental
elements which are easier to interpret with regards to the pix-
els. Component trees [4], [9], are thresholds decompositions

that represent connected components [12] at every threshold
level of an image in a hierarchical fashion, through parent
relationships between nodes. The connected components
organized in such trees can be filtered with different strate-
gies [3], [4] and canmodel various types of connectivity [13].

Component trees (i.e., max- and min-tree) have been pop-
ularized by connected operators, such as attribute filters [2],
[3], which have been extensively used for the modeling of
spatial information in images from remote sensing [14], [15],
astronomy [16], [17] and medical scanning [18], [19]. Attri-
bute filters are edge-preserving and flexible operators due to
the preservation of contours in the processed objects and rely
on multiple spatial measures or attributes. The possibility to
perform a multi-attribute analysis, like attribute filters built
by employing different attributes, enriches the extraction
of spatial arrangement and improves the discrimination
between different structures. In the presence of scenes with
high complexity and heterogeneity, e.g., densely populated
urban area, a complete modeling of the spatial information
can be achieved through a multi-level analysis. It implies the
decomposition of the original gray-level image obtained by
applying a sequence of attribute filters according to a set
of filter thresholds [20]. The result of this operation are the
so-called attribute profiles [14]. They have been exploited
mainly in remote sensing, e.g., classification [21], [22], data
fusion [23] and change detection [24], as well as in medical
imaging processing for tomographic image segmenta-
tion [25]. Recently, attribute filters are utilized within a novel
deep learning framework for the large-scale, unsupervised
detection of objects in remote sensing image [26]. A set of
attributes is automatically identified in order to extract a
representative, high quality training data set.

Nowadays, image processing applications rely on very
high resolution data due to the continuing technological

� M.G€otz andM. Riedel are with the J€ulich Supercomputing Center,Wilhelm-
Johnen-Straße, J€ulich 52428, Germany, and with the University of Iceland,
Reykjavik 107, Iceland. E-mail: {m.goetz, m.riedel}@fz-juelich.de.

� G. Cavallaro is with the J€ulich Supercomputing Center, Wilhelm-Johnen-
Straße, J€ulich 52428, Germany. E-mail: g.cavallaro@fz-juelich.de.

� T. G�eraud is with the EPITAResearch andDevelopment Laboratory (LRDE),
Le Kremlin-Bicêtre 94270, France. E-mail: thierry.geraud@lrde.epita.fr.

� M. Book is with the University of Iceland, Reykjavik 107, Iceland.
E-mail: book@hi.is.

Manuscript received 15 Sept. 2017; revised 2 Mar. 2018; accepted 31 Mar.
2018. Date of publication 17 May 2018; date of current version 10 Oct. 2018.
(Corresponding author: Markus G€otz.)
Recommended for acceptance by L. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2829724

2582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
_

improvements of the sensor instruments. For example earth
observation platforms have led to the increasing volume,
acquisition speed and variety of sensed images, e.g., the
World-View-3 satellite sensor (spatial resolution of 0.31 m),
or the AISA Dual airborne sensor (500 bands with spectral
resolution of 2.9 nm). The performances of traditional serial
and parallel algorithms for computing the component trees
are strictly correlated to the size and the quantization of the
data. The size of remote sensed images is usually in the order
of several gigabytes due to the depiction of vast and complex
scenes. Consequently, they can not be stored or processed by
algorithms designed for a single shared-memory machine.
Furthermore, due to the high sensitivity of the new sensors,
e.g., radiometric resolution, these images are characterized
by an ample domain of integers or floating point values,
which directly affect the processing time.

In this paper, a novel shared- and distributed-memory
hybrid algorithm for the efficient computation of exact com-
ponent trees, specifically the min- and max-tree, of integral
gray-scale and floating-point images, is presented. For this,
the problem, i.e., the image is subdivided into equal-sized
chunks that get assigned to all available distributing comput-
ing nodes. Then, each of the nodes computes a local, partial
component tree of the assigned chunk. A modified version
of the shared-memory parallelized, depth-first, flooding
max-tree algorithm proposed by Ouzounis et al. [27] is
employed. Finally, the obtained partial component trees
need to be merged into a correct, monolithic global represen-
tation. This is achieved through the iterative resolution and
rearrangement of the iso-level edges of the image chunks’
boundary trees for each gray-level, marking the major algo-
rithmic challenge. In the proposed approach, the level con-
nections are expressed as tuples—a data structural design
that has been used by Flick el al. [28] for the distributed reso-
lution of genomic graphs. This is a novelty in the mathemati-
cal morphology framework and the distributed computation
of component trees.

The remainder of this paper is organized as follows.
Section 2 provides a brief introduction to component trees.
The subsequent Section 3 presents an overview over existing
algorithms proposed in the literature. In Section 4 the pro-
posed algorithm for parallel and distributed computation of
the component trees is laid out. Complexity considerations

and implementation details are explained in Section 5. A
study of the algorithms strong and weak scaling as well as
comparative study to the current state-of-the-art algorithm is
presented in the experimental evaluation in Section 6. Finally,
Section 7 concludes the paper, discussing the findings of this
work and presents opportunities for future work.

2 COMPONENT TREES

Component trees were introduced by Jones [9], [29] as effi-
cient image representations that enable the computation of
advanced morphological filters in a simple way. These trees
are hierarchical structures that encode the threshold sets
and their inclusion relationship. Thereby, each sub-tree is
nothing different than all connected image components up
until the given gray-threshold. As a result, one of the major
advantages of components trees is their possibility to effi-
ciently implement of connected filters.

More formally, let f : V! E be a discrete two-
dimensional gray-scale image, defined on a spatial domain
V � Z

2 and taking values on a set of scalar values E � Z. For
any � 2 Z, a lower LðfÞ and upper UðfÞ threshold set is
defined by

LðfÞ ¼ fx 2 V; fðxÞ < �g; (1)

UðfÞ ¼ fx 2 V; fðxÞ > �g: (2)

Let PðVÞ be the power set of all the possible subsets of V.
Given X 2 V, the set of connected components of X is
denoted as CðXÞ 2 PðVÞ. Each connected component is
represented by a unique point called the level root [30],
or canonical element [16]. Considered two points x; y 2 V,
and xr the root of the tree, x is canonical if x ¼ xr or
fðparentðxÞÞ < fðxÞ (where parent is the image that encodes
the inclusion relationship of the threshold sets [16]) If � is a
total relation, any two connected components Y;Z 2 CðLðfÞÞ
are either disjointed or nested. The min-tree and max-tree
structures represent the lower, respectively upper, threshold
components in LðfÞ and UðfÞ as well as with their inclusion
relations. For example, Fig. 1c shows the max-tree structure
of the image in Fig. 1a. The arrows denote the parent relation
between the nested connected components that are identi-
fied in Fig. 1b. This is a simplified case that it is used for clar-
ification purposes. In synthetic images that include more

Fig. 1. Example of max-tree representation based on exemplary image and its components Ci
c, with the subscript c being the gray-level and the

superscript i the canonical point uniquely identifying the component.

G€OTZ ET AL.: PARALLEL COMPUTATION OF COMPONENT TREES ON DISTRIBUTED MEMORY MACHINES 2583

complex shapes (see the example in Section 4) or real scenar-
ios the max-tree structure is less intuitive since its hierarchy
is not driven by the inclusion relationship of connected com-
ponents as it appears in Fig. 1. Furthermore, the notion of
tuple as used in this work should be understood as a finite
sequence of four elements of the form hcx; x; cy; yi with
x; y 2 V being two pixel coordinates and cx; cy 2 E ^ fðxÞ ¼
cx ^ fðyÞ ¼ cy the colors of these pixels.

3 RELATED WORK

The selection of the most appropriate algorithm for comput-
ing the component trees shall be made according to the
properties of the input image (i.e., size and pixel value
quantization) and the processing resources available such
as memory capacity and number of computing cores.
Carlinet et al. [31] presented a comparative review of the
state-of-the-art algorithms and provided detailed guidelines
for selecting the most suitable algorithm. The algorithms
are grouped into three main classes: immersion-, flooding-
and merge-based. Algorithms that belong to the immersion
and flooding class, may also be referred to as leaf-to-root
merging and root-to-leaf flooding methods, respectively
[32]. Since this section is not intended to repeat the review,
Fig. 2 merely presents a timeline for each algorithm class,
and how they have developed in the past years.

As explained in Section 1, the algorithm proposed in this
work is of hybrid nature, entailing shared- and distributed-
memory parallelization aspects simultaneously. The node-
local parallelization is thereby based on a flooding strategy,
while the distributed computation components follows a
merge-based approach. Therefore, a detailed explanation of
immersion algorithms is deliberately left out, and the reader
is referred to Tarjan [33], Najman et al. [30], Berger et al. [16]
and Carlinet et al. [31].

3.1 Flooding Algorithms

The first flooding algorithm was proposed by Salembier
et al. [4]. It is an efficient algorithmwhich retrieves the pixel at
the lowest gray-level, i.e., root, through a scanning step and
then it performs a propagation by flooding the neighbor
at the highest level, i.e., a depth-first traversal of the connected
components at higher intensities. Pixels in the propagation
front are stored in a hierarchical queue composed by as many
First In First Out (FIFO) queues as the number of gray-levels.
It allows to directly access any pixel in the FIFO queue at a
given level. Salembier’s et al. [4] algorithm was rewritten in
a non-recursive implementation by Hesselink et al. [34],
later also by Nister et al. [35] and Wilkinson et al. [36]. The

algorithm presented by Wilkinson aims at solving the limita-
tion of Salembier, the linear scaling with the number of gray-
levels. Wilkinson has proposed to use a priority queue and a
stack, a combination of the algorithms of Salembier et al. and
Hesselink et al., instead of using only a hierarchical queue for
handling the pixel values during the flooding.

Algorithm 1.Non-Recursive Version of Salembier’s
Algorithm as Presented by Carlinet et al. [31]

1: procedure PROCESS-STACKðr; qÞ
2: � fðqÞ
3: POP ðlevrootÞ
4: while levroot not empty and � < f(TOPðlevrootÞ) do
5: INSERT_FRONT(S; r)
6: r parentðrÞ POP ðlevrootÞ
7: if levroot empty or f(TOPðlevrootÞ) 6¼ � then
8: PUSH ðlevroot; qÞ
9: " Particular case of the last element:
10: parentðrÞ TOPðlevrootÞ
11: INSERT_FRONT(S; r)
12: functionMAX-TREEðfÞ
13: " 1. INITIALIZATION:
14: FOR ALL p DO parentðpÞ �1 " MEANING “UNSEEN”

15: start pixel ANY POINT IN V

16: PUSH (pqueue, start pixel)
17: PUSH (levroot, start pixel)
18: parentðstart pixelÞ INQUEUE
19: " 2. FLOODING:
20: LOOP
21: FLOOD

22: p TOPðpqueueÞ; r TOPðlevrootÞ
23: FOR ALL n 2 NðpÞ SUCH THAT parentðpÞ ¼ �1 DO

24: PUSH (pqueue, n)
25: parentðnÞ INQUEUE
26: IF fðpÞ < fðnÞ THEN

27: PUSH (levroot, n)
28: GOTO FLOOD " p IS DONE

29: POP ðpqueueÞ
30: parentðpÞ r
31: IF p 6¼ r then INSERT_FRONT(S; p)
32: " 3. ROOT FIXING:
33: WHILE pqueue NOT EMPTY DO

34: " ALL POINTS AT CURRENT LEVEL DONE?
35: q TOP ðpqueueÞ
36: " ATTACH r TO ITS PARENT

37: IF fðqÞ 6¼ fðrÞ THEN PROCESS-STACKðr; qÞ
38: " PARTICULAR CASE OF THE LAST ELEMENT, THE TREE ROOT:
39: root POPðlevrootÞ
40: INSERT_FRONT(S; root)

Fig. 2. The main three classes of algorithms and their chronology. Each entry includes the publication year, the algorithm class (s - serial or p - paral-
lel) and the corresponding reference.

2584 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Carlinet et al. [31] have proposed a non-recursive flooding
algorithm variant of Salembier et al., which has strong simi-
larities with Wilkinson et al. and Nister et al. Due to the fact
that the algorithm proposed in this work is based on it, the
pseudo-code (40 lines only) is shown in Algorithm 1. The
algorithm computes two structures that describe the tree: a
parenthood image, such that parentðpÞ is the parent pixel of
pixel p in the tree, and an array of pixels S, where pixels are
sorted such as the parent of any pixel is always stored before
this pixel (so browsing S corresponds to a downward tra-
versal of the tree). To that aim, two auxiliary structures are
used: pqueue is a hierarchical queue of pixels, and levroot is a
stack of pixels. The algorithm is divided into three stages: ini-
tialization, flooding and root fixing, respectively starting
from lines 13, 19 and 32. In the initialization phase, a random
point start pixel is chosen as the flooding point. This pixel is
now considered as a canonical element, i.e., the representa-
tive of the connected component, and it is pushed on the
stack levroot. This stack stores the representative pixels of
the visited components; these pixels are the roots of the sub-
trees, so they represent components at different gray-levels.
The main purpose of the flooding phase is to compare the
gray-level of each pixel p with its neighboring pixels n, and
to enqueue those that have not yet been seen. The first proc-
essed pixels are p and the canonical element r of its compo-
nent. These have the highest priority in the queue, i.e., the
highest gray-level, and are on top of levroot (p is not removed
from the queue). The neighboring pixels n are pushed on the
stack only if fðnÞ > fðpÞ, line 24, which immediately trig-
gers a jump (goto) to the flood label (in line 21). This jump
thus emulates a recursive call, which actually corresponds to
a depth-first discovery of the tree. At a certain point, all the
neighboring pixels of pwill be either in the queue or already
processed, meaning that the analysis of p has terminated; we
cannot progress deeper in the tree. Following this, p is
removed from the queue (line 29), parentðpÞ is set to r, i.e.,
the canonical element. In order to ensure that the canonical
element will be the last one inserted, p is added to S when
r 6¼ p (line 31). After p is removed from the queue, the canoni-
cal element r is attached to its parent only when the level
component has been fully processed (line 30). The last step
(startging from line 32) aims at setting the parenthood rela-
tionship between components. The first element q of pqueue
is retrieved, and the PROCESS-STACK procedure is called
(line 37) when q has a different level than p. It pops the stack,
sets the parent relationship between the canonical elements,
and inserts them in S until the top component has a level no
greater than fðqÞ—lines 3 to 6. When the stack gets empty or
the top level is lower than fðqÞ, then q is pushed on the stack
as the canonical element of a new component—lines 7 and 8.
The top element of the stack is the current root pixel—linelst:
last and following. The algorithm ends when all points in
queue have been processed, then S only misses the root of
the tree, which is the single element that remains on the stack
(line 38 and following).

3.2 Merge-Based Algorithms

The natural way to implement a parallel algorithm is to
divide the original image domain and compute the max-
tree on each sub-image using any algorithm from Fig. 2. In
order to compute this partition, the image should be split in

Np connected disjoint regions, which is the union that forms
the entire image domain. During this step, the image is split
into a reasonable number of chunks, which reflects the
underlining processing architecture, e.g., number of threads
available. For instance, when the number of image chunks
is lower than the number of threads the domain is not
decomposed enough and the distribution of the computa-
tions is not yet optimal (load imbalance). Some threads will
idle while having to wait for other threads to finish. Once
all sub-trees are generated, they can be merged into a single
global tree as proposed by Matas et al. [37], Wilkinson
et al. [38] and Ouzounis et al. [27]. This is a non-trivial phase
as it requires that the gray-levels of the connected compo-
nents are merged and their parent relationships updated.

The merging strategy introduced by Matas et al. [37] fol-
lows the same principle used by Wilkinson. However, the
algorithm starts by computing partial 1-D trees (i.e., a tree for
each row of the image). Then, the trees that belong to neigh-
boring rows are merged progressively until the global tree is
obtained. The merging algorithm proposed by Wilkinson
et al. [38] retrieves the globalmax-tree and its attribute values
from multiple sub-trees that can be derived over any arbi-
trary image sections. First, each thread computes a data struc-
ture (i.e., partial max-tree) that sets the parent pointers and
accumulates attribute values. Afterward, all these sub-
domains are merged through the use of a binary tree. This is
achieved through a concurrent merging strategy which con-
nects two partial max-trees step by step. A synchronized
mechanism based on two binary semaphores defines when a
thread is ready to accept the domain of its neighbor (i.e., the
sender has to complete the max-tree computation). Once the
last connection is computed by the thread 0, all the threads
can resume and proceed with the filtering phase. Ouzounis
et al. [27] proposed a max-tree algorithm implementation for
attribute filtering based on the concurrent merging strategy
in [38]. The hybrid algorithm proposed in this paper relies on
the merging strategy used in [27], [38] and additional details
can be found in Section 4.

3.3 Connected Component Labeling

The main problem of generating the max-tree can be split
into two parts: find the connected components and establish
their hierarchy. The task of grouping connected pixelswithin
an image can be seen as the well-known Connected Compo-
nent Labeling problem [39]. This is an important step for a
large number of applications and it relies first on finding
which parts of an object, e.g., binary images, gray-levels
images, data with higher dimensionality, etc., that are physi-
cally connected, based on a connectivity rule, and second, to
label them. Iverson et al. [40] provide an evaluation of
connected-component labeling algorithms in the context
of distributed computing, when data that need to be proc-
essed in a given application usually require large processing
power and distributed-memory machines. They conclude
that there is an unavoidable compromise to find between
memory and processing time. Most of the available parallel
algorithms are problematic especially in terms of memory
requirements. For instance, the merging step could end up
on a single node resulting in an unbalanced scenario. How-
ever, algorithms that try to solve this problem provide poor
scaling results in terms of processing time. At the same time

G€OTZ ET AL.: PARALLEL COMPUTATION OF COMPONENT TREES ON DISTRIBUTED MEMORY MACHINES 2585

Flick el al. [28] proposed a scalable distributed-memory
algorithm to overcome this problems raised by Iverson. They
have aimed to solve issues such as excessive memory usage,
extra computation and communication of the processors,
and load balancing. The main idea of the algorithm is similar
to the Shiloach-Vishkin algorithm [41] in that it transforms
the problem into finding weakly connected components
within the Bruijn directed graph [42]. It will be shown in
Section 4 that the proposed algorithm uses the notion of
tuples and inverse doubling in order to connect the overlap
zones between the split regions and resolves the connected
components and their corresponding parenthood.

4 DISTRIBUTED COMPONENT TREE ALGORITHM

In the following sections the algorithm for the parallel and
distributed computation of the component trees will be
introduced. To simplify the explanation, only the max-tree
case will be presented. A corresponding min-tree algorithm
can be inferred by reversing the order in which the gray-
levels are processed. Furthermore, the explanations assume
a homogeneous, distributed systems. This refers in particu-
lar to the workload distribution of the image into contigu-
ous, equal-sized partitions. For heterogeneous, distributed
systems a different, more appropriate strategy must be
chosen, such as proposed by Qin et al. [43].

4.1 Definitions and Notation

A two-dimensional gray-scale image f can be seen as an
undirected graph G ¼ ðV;EÞ. V represents a set of vertices—
the pixels of the image—and n ¼ jV j the total number of
pixels. Then E, a number of edges or non-ordered pairs of
vertices ðvi; vjÞ, with i; j 2 ½0; n½, which model the neighbor-
hood relationship of the pixels. Classically, images are
either four- or eight-connected [44], meaning the top, left,
right and bottom neighbors, respectively including the diag-
onals, are considered connected neighbors. The entire graph
G is said to be connected if, for any p; q 2 V , there exists a
path from p to q, which is a sequence of s > 1 vertices—i.e.,
p ¼ p1; . . . ; ps ¼ q—such that every pi 2 V , and any two suc-
cessive pixels of the sequence are adjacent epi;piþ1 2 E. Given
this definition a connected component CC is a subgraph
of G such that VCC � VG; ECC � EG, 8 p 2 VCC : fðpÞ ¼ c,
that is maximal: 8 e ¼ ðp; p0Þ 62 ECC such that p 2 VCC and p0 62

VCC; fðp0Þ 6¼ c. A connected component can be either weak
or strong connected, depending on the path length s. Weak
connected graphs can have an arbitrary path length, while
for strong connected graphs s ¼ 2 holds. Furthermore, if not
stated otherwise, the following symbols are defined for the
remainder of the document: h and w is the height and the
width of the image f , respectively. The entire image has a
gray-level depth d, i.e., the number of different gray-values
c. Concerning parallelization, the number of available dis-
tributed compute nodes is p, while the local number of
shared-memory threads is labeled with t. For the explana-
tion of the distributed resolution, it is also necessary to
introduce what is coined a tuples. These are essentially
quartuples, mathematical tuples with four components, of
the form hci; pk; cj; pli with ci and cj being two gray-values
and pk and pl two vertices. They are used to explicitly
express edges e 2 E of the image f of a canonical point with

a certain gray-value to a different canonical point of a given
other gray-value.

4.2 Concept

The general nature of the distributed max-tree algorithm
can be described as divide-and-conquer. This means, that
the entire problem, i.e., the image, is divided into sub-
images for which the respective max-trees are computed
and that are then successively merged along the division
boundaries. The major algorithmic challenge lies in the lat-
ter stage. It requires to solve two demanding graph theory
sub-problems—connected component labeling and graph
canonicalization—in distributed memory environments.
This work proposes an iterative, parallel merging algorithm
based on explicit expression of the max-tree edges as
directed tuples. For this, halo-zones are employed—one-
pixel wide, redundant overlaps of the partial images of
neighboring image chunks (see also Fig. 3). Conflicts within
the tuples signify the need to rearrange the edges of the
boundary tree in order to obtain a globally correct view.
Such a conflict could for example be, that the exact same
gray-level component points to different parent compo-
nents in the partial trees.

Analogous to the two graph problems to be solved, the
proposed algorithm requires two kinds of tuples. First, the
locally determinable edges of the boundary trees in the halo
zone (root tuples), and, second, information about compo-
nents that have been split due to the image division
(area tuples) and their the canonical points. In the proposed
resolution approach, the tuples are iteratively scanned for
and remapped to the most optimal candidates. This entails
merging split iso-level and determining the best parent or
root each component and as a result remapping the tuples.
Less optimal tuple candidates are replaced by transient
edges to ensure a correct merge of the remaining trees. Sub-
sequently, the computed changes need to be applied to the
partial images. For this, the resolved tuples are send back to
the respective sub-images of origin, and utilized to obtain
the globally create max-tree. Algorithm 2 sketches the pro-
posed strategy.

Algorithm 2. Pseudo-Code of the Proposed Distributed
Max-Tree Algorithm

1: @parallel
2: function DISTRIBUTED-MAX-TREEðfÞ
3: p number of nodes
4: r processor id in range ½0; p½
5: t number of threads
6: f 0 Load� Partial� Imageðf; r; pÞ
7:
8: parents0 Local�Max� Treeðf 0; tÞ
9:
10: root tuples Halo-Tree-Edgesðf 0; parents0Þ
11: area tuples Halo-Componentsðf 0; parents0Þ
12: tuples Resolveðarea tuples; root tuplesÞ
13:
14: tuples0 RedistributeðtuplesÞ

15: parents applyðtuples0; parents0Þ
16:
17: return parents

2586 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 3. Toy example demonstrating the tuple resolution of the distributed max-tree algorithm.

G€OTZ ET AL.: PARALLEL COMPUTATION OF COMPONENT TREES ON DISTRIBUTED MEMORY MACHINES 2587

4.3 Local Max-Tree Algorithm

For the local computation one can in principle employ any
correct max-tree algorithm. The proposed solution specifi-
cally utilizes a modified version of the recursive Salembier’s
depth-first flooding algorithm [4]. As observed by Carlinet
et al. [31], Salembier’s algorithmwas rewritten in a nonrecur-
sive implementation by Hesselink et al. [34] and later by
Nister et al. [35] and Wilkinson et al. [36]. In [36], it was
shown that replacing the hierarchical queue (used in [4]) by a
priority queue to perform the recursive flooding strongly
reduced the computation of component trees, especially for
high-dynamic range images (i.e., with floating point). Due to
the similarities of approach and the proved efficiency in
terms of processing time in [36] and [35], Carlinet et al. [31]
merged these solutions and suggested a novel non-recursive
implementation, which is utilized in this work. Additionally,
it has been enhanced to always use the minimal pixel index
as canonical point for an iso-level and to yield better compu-
tational performance. Algorithm 3 presents the correspond-
ing pseudo-code.

The first change can best be seen in line 26. In contrast
to the original non-recursive variant, the canonical area
point is not chosen at the beginning of an iso-level proc-
essing—as it may not yet be the canonical minimum—but
rather constantly maintained throughout the process.
This is done by keeping the current area minimum at a
specific place, e.g., the front of the pixel vector, and com-
pared to on insertion of new elements. Only after all pix-
els of the entire iso-level is found, the canonical point is
assigned in the parent image, see also line 31, and thus
minimality of the index guaranteed.

Moreover, when one considers the computational perfor-
mance of the algorithm, the proposed modifications also
allows for faster computation. Before, each gray-level had its
one hierarchical queue in Salembier’s original algorithm for-
mulation or a singular in Carlinet’s non-recursive reformula-
tion. This approach scales logarithmically with both, the
number of gray-levels as well as the number of pixels per
channel. In the proposed variant the gray-levels are keys to a
map, called stacks, that has vectors for the corresponding
pixels as keys. Then, insertions only scale logarithmically
with the number of gray-levels, for locating the respective
vector in the map, but the actual push operation happens in
constant time. Especially in images with a large amount of
pixels, this can drastically reduce computation time.

The strategy for shared-memory parallelization explained
by Ouzounis et al. [27] has been chosen. Their max-tree algo-
rithm was based on the parallel implementation proposed
by Wilkinson et al. [38]. The authors largely proved the cor-
rectness and efficiency of the approach and they predicted
an achievable (near) linear speed-up beyond 4 CPUs. In
greater detail, the local image partition of the node distribu-
tion step, is again virtually partitioned in t equally sized hori-
zontal chunks, without overlap, and assigned to one of the t
threads. For each of the partitions the partial max-tree is
computed using the introduced algorithm. The virtual
images boundaries are realized by excluding respective pix-
els in the neighborhood searches. Finally, the partial max-
trees are merged using the connect function, equally pre-
sented by Ouzounis et al. [27]. Minor changes have been
made to ensure that the canonical points of each iso-level is

guaranteed to be minimal. This can be achieved by perform-
ing a look-ahead on the upcoming elements of the merge
stacks and potentially swap them if required. After the local
computation, one would obtain the partial max-trees
depicted in Figs. 3e and 3f.

Algorithm 3. Pseudo-Code of the Modified Version of
Salembier’s Depth-First, Flooding-Based Max-Tree
Algorithm

1: functionMAX-TREEðfÞ
2: stacks fg " Initialization
3: pixels fg
4: children ½ �
5: for all p 2 f do
6: parentsðpÞ �1
7: deja vuðpÞ false
8:
9: start pixel any index in f " Seed pixel
10: start grayv fðstart pixelÞ
11: deja vuðstart pixelÞ true
12: PUSH (stacksðstart grayvÞ, start pixel)
13: PUSH (pixelsðstart grayvÞ, start pixel)
14:
15: while not EMPTYðstacksÞ do " Depth-first
16: FLOOD

17: grayv MAX-KEYðstacksÞ
18: pixel POPstacksðgrayvÞ
19: for all n 2 N ðpÞ do
20: if deja vuðnÞ then continue
21: deja vuðnÞ true
22: PUSHstacksðfðnÞÞ; n
23: PUSHpixelsðfðnÞÞ; n
24: if TOPðstacksÞ > BACKðstackÞ then
25: " Ensure canonical point is in front
26: Swap(TopðstacksÞ;BackðstacksÞÞ
27: if grayv < fðnÞ then
28: PushðstacksðgrayvÞ; pixelÞ
29: goto FLOOD

30:
31: if EmptyðstacksðgrayvÞÞ then " Iso-level done
32: c pixelsðgrayvÞ
33: for all p 2 pixelsðgrayvÞ do parentsðpÞ c
34: " Remove the iso-level from the maps
35: Eraseðpixels; grayvÞ
36: Eraseðstacks; grayvÞ
37:
38: if EmptyðstacksÞ then " Attach children
39: merge Max-KeyðstacksÞ
40: else
41: merge grayv
42: while not EmptyðchildrenÞ and

,! BackðchildrenÞ:grayv > merge do
43: child PopðchildrenÞ
44: parentsðpÞ child:pixel
45: Pushðchildren; hmerge; ciÞ
46:
47: if not EmptyðchildrenÞ then " Attach root children
48: root BackðchildrenÞ:grayv
49: for all c 2 children do parentsðcÞ root
50:
51: return parents

2588 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

4.4 Tuple Generation

The tuple generation of the partial images is subdivided into
two major steps. First, there is the generation of root tuples,
representing the branches of the halo areas’ partial max-trees,
and, second, the area tuples—i.e., tuples that connect or stitch
the gray-level components divided by the image partition.

The former set of tuples is generated by traversing the
boundary max-trees recursively upwards towards the root.
For each edge within the tree a corresponding tuple is cre-
ated with the canonical point of a sub-ordered, child iso-
level pointing to the canonical point of its parent. In line
with the used notation it is the result of a HALO-TREE-EDGES

function invocation. The performance of this step can be fur-
ther optimized by skipping already visited branches also
avoiding redundant tuples. Generating the root tuples can
be performed fully local and does not require any data
exchange with other processing nodes.

The former step, the connection of the split components,
is achieved by identifying differences in the labeling of the
canonical points of said components in the halo areas. It is
the result of a HALO-COMPONENTS function invocation. This
can achieved efficiently by performing two prefix-sums pix-
els in the halo area of the partial images. In the first run, the
canonical points are broadcast downwards across the par-
tial images, while the second prefix-sum, in reverse, back-
propagates found differences. Each conflict implies that a
merge of the two components is necessary. Therefore, an
area tuple needs to be created. It maps the higher canonical
point xh to the lower xl, resulting in a tuple of the form
hc; xh; c; xli. For a faster collapse of transitive chains in the
resolution stage, the inverse tuple hc; xl; c; xhi is additionally
generated and stored. This entire process of performing the
prefix-sums can be efficiently realized using a logarithmic
merge tree across all available nodes.

4.5 Distributed Tuple Resolution

The resolution of the tuples happens essentially in the same
mode as the generation of tuples. First, the area tuples are
resolved, which requires the iterative resolution of the
weakly connected area components into strong ones, and
then, second, the resolution of the edges for the normalized
components. The respective high-level pseudo-code is dis-
played in Algorithm 4. It makes use of the distributed com-
munication primitive ALLREDUCE several times. In line with
this text it should be understood as a function that reduces,
i.e., combines, vector of values with the same length and
arbitrary, but consistent data types, element-wise using an
operator given as second parameter. The single, final result
vector is broadcast to all participating distributed compute
nodes. ALLREDUCE can be efficiently implemented using a
logarithmic communications tree.

In general, the area tuple resolution is inspired by the dis-
tributed connected component labeling algorithm presented
by Flick et al. [28]. The goal is to turn a weakly connected
graph, here the components, into a strongly connected ones,
meaning directly pointing to the correct canonical point of
an area without intermediate, transitive connections. This is
achieved by following the graph edges until the most opti-
mal, i.e., smallest pixel point is found. However, in distrib-
uted memory environments it might not be possible to
follow all paths directly as they might be residing on a

different machine. To overcome this, the longest local partial
graph paths are computed and iteratively shortened until
the strong graphs are found. For this, all tuples are globally
sorted, i.e., across all nodes, and locally linearly scanned for
the most optimal candidate, remapped and saved. This pro-
cess is repeated until convergence is achieved, which is equal
to having no tuples remapped in the current iteration. Tech-
nically, there are two challenges involved in this.

Algorithm 4. Pseudo-Code of a Single Iterations of the
Distributed Area Tuple Resolution

1: @parallel
2: function RESOLVE(area, roots)
3: tuples ½�
4:
5: loop
6: all done Allreduce(EmptyðrootsÞ; AndÞ
7: if all done then break
8:
9: grayv Allreduce(Max-KeyðrootsÞ; MaxÞ
10: unresolved true
11: while unresolved do
12: Global-SortðareaÞ
13: rules Resolve-ComponentsðareaðgrayvÞÞ
14: unresolved RemapðareaðgrayvÞ; rulesÞ
15: unresolved Allreduceðunresolved;OrÞ
16:
17: resolved Resolve-Rootsðgrayv; area; rootsÞ
18: tuples Concatðtuples; resolvedÞ
19:
20: return tuples

First, there is the problem of globally sorting (GLOBAL-
SORT in Algorithm 4) the tuples. This means that all tuples
need to be partially ordered, so that the smallest element is
on the node with the smallest rank and the maximal tuple
on the node with the highest rank. For this, the distributed
max-tree algorithm uses an enhanced version of the parallel
sorting by regular sampling algorithm [45]. In the variant
that is proposed here, the number of tuples are additionally
balanced after sorting them, in order to keep the workload
equal on each node.

Second, there is the problem of finding the strongest con-
nected components local to each node. The approach pro-
posed here, is sketched in Algorithm 5. Each of the area
tuples is linearly scanned and the most optimal, i.e., smallest
canonical point memorized in an associate map called rules.
These can then be applied to the tuples by scanning them
once again and modifying the During the transitive solution
the entire rule chain needs to always be canonized and the
currently known minimum pointed to (lines 8–12). If the
tuples are balanced during the global sorting step, the resolu-
tion of the partial component graphs, i.e., all the tuples with
the same origin, may additionally be fragmented across the
memory of multiple nodes. Therefore, the distribute max-tree
algorithm must connect these partial graphs in each iteration.
This can be achieved by exchanging the start and end of the
sorted tuple chain including the found canonical point with
the direct neighbors. Given that the neighboring node pro-
poses a better canonical point, it is adopted instead of the one
found locally. Transitivity is achieved by logarithmically

G€OTZ ET AL.: PARALLEL COMPUTATION OF COMPONENT TREES ON DISTRIBUTED MEMORY MACHINES 2589

merging these chains across all available machines. For this
two prefix-sums (sometime also cumulative sum or scan,
lines 15–16), first from left to right across the ranks, and then
in reverse to propagate potentially better canonical points
back.

Algorithm 5. Pseudo-Code of the Component Resolution
Algorithm Mapping Weakly Connected Tuples into
Stronger Ones

1: function RESOLVE-COMPONENTðarea tuplesÞ
2: rules fg
3:
4: for all tuple 2 area tuples do
5: from tuple:from
6: to tuples:to
7: if to > from then Swapðto; fromÞ
8: canonical Canonizeðrules; fromÞ
9: min Minðcanonical; toÞ
10: max Maxðcanonical; toÞ
11: rules½from� ¼ min
12: rules½max� ¼ min
13:
14: ends ½Frontðarea tuplesÞ;Backðarea tuplesÞ�
15: Left-Prefix-Sumðends; rules;MinÞ
16: Right-Prefix-SumðReverseðendsÞ; rules;MinÞ
17:
18: return rules

Furthermore, each tuple exists twice. Once in the “correct
direction” pointing from the larger pixel index to the lower
index and its inverse, pointing from low to high. Whenever
a tuple is remapped, the tuple is flipped, i.e., the direction is
changed, for the next iteration in order to back propagate
this change to its inverse. The reason behind this is, that the
inverse tuple might have found an even more optimal
canonical point coming from the other side of the chain, due
to say half circular structures on the image. Both tuples are
then updated and the transitive chain collapsed much
quicker. As an effect of this, the number of iterations heavily
reduces, as introduced by Flick et al. [28].

After the canonicalization of the weak connected com-
ponents into strong connected components, the roots for
each of the canonical points must be found. The corres-
ponding approach is sketched in Algorithm 6. For this, the
area tuples and root tuples are merged first in order to nor-
malize of the components’ canonical points (lines 2–4). Only
then can the most optimal root for each component be deter-
mined. This is achieved by once again linearly scanning the
tuples and memorizing the best candidates in an associative
map called best roots. Similarly to the area tuples frag-
mentation, root candidates of a single component may be
scattered across multiple nodes. Therefore, they must be
connected two prefix-sum operations (lines 7–10).

In a third andfinal linear scan over the combined tuples the
found best roots are evaluated. There are four possible
options. First, the tuple’s root gray-value is smaller, i.e., it is
further up in the tree, than the best root. In this case, a tuple
needs to be created that connects the best root transitively
with the one from the tuple (see case 2). Second, the gray-
value of the tuple and the best root match, but the root has a
smaller canonical point (see case 3) This means that the root

and its connected component as well as the one of the neigh-
bor are weakly connected via the area of the current tuple. An
area remapping tuples needs to be created, including its
inverse, and added to the area tuples. Third, the current tuple
already points correctly to the best root (see case 4), then the
tuple is inverted, essentially pointing the “wrong” way
around from the root to the lower area and pushed into the
root’s gray-valued tuple bucket. The reason behind this is,
that the canonical point of the root might still be changed dur-
ing the area resolution phase of its gray-value. Therefore, it
may not be marked as finished yet, but kept until the respec-
tive gray-level of the roots has been resolved. Finally, the
fourth condition (see case 1) is meant for inverted root tuples.
After their normalization, they are flipped yet again into the
“correct” order, i.e., pointing from high gray-values to low
gray-values and send back to its respective tuple bucket.

Algorithm 6. Pseudo-Code of the Distributed Resolution
of the Root Tuples

1: function RESOLVE-ROOTSðgrayv; area; rootsÞ
2: combined ConcatðareaðgrayvÞ; rootsðgrayvÞÞ
3: Global-SortðcombinedÞ
4: NormalizeðcombinedÞ
5:
6: " Determine best root for each components globally
7: best roots Find-Best-RootsðcombinedÞ
8: ends ½FrontðcombinedÞ;BackðcombinedÞ�
9: Left-Prefix-Sumðends;MinÞ
10: Right-Prefix-Sum(ReverseðendsÞ;MinÞ
11:
12: for all tuple 2 combined do
13: root best root½tuple:from�
14: if tuple:grayv > tuple:n grayv then " Case 1
15: Pushðrootsððtuple:grayvÞÞ; InvertðtupleÞÞ
16: else if tuple:grayv < root:grayv then " Case 2
17: PUSH ðrootsðroot:grayvÞ; < root:grayv;

,!root:from; tuple:n grayv; tuple:to >
18: Else If tuple:n grayv ¼ root:grayv and

,! root:pixel < tuple:to " Case 3
19: t to Canonizeðtuple:toÞ
20: r to Canonizeðroot:toÞ
21: n c tuple:n grayv
22: min to Minðt to; r toÞ
23: max to Maxðt to; r toÞ
24: Pushðarea½n c�; hn c; tuple:to; n c;min toiÞ
25: Pushðarea½n c�; hn c;min to; n c; tuple:toiÞ
26: Pushðarea½n c�; hn c;max to; n c;min toiÞ
27: Pushðarea½n c�; hn c;min to; n c;max toiÞ
28: else " Case 4
29: PUSH (rootsðroot:grayvÞ;

�

root:grayv;
,!root:from; tuple:grayv; tuple:from

�

)
30:
31: return tuples

4.6 Obtaining the Global Parent Image

After the tuples have been resolved the global parent image
can be obtained by redistributing the tuples back to their
original sub-image. For this, the each tuple is send back to
the node, that contains the pixel with the index of the second
tuple component, independent whether it is a area or edge
tuple. Each of the area tuples is then stored in an associative

2590 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

container, mapping from the original points to the canonical
point. Subsequently, while iterating over the image, each of
the pixels is normalized to its correct canonical points using
said data structure. The root tuples are handled slightly dif-
ferently. Each tuples is visited once and the pixel index at the
from part of the tuples is simply set to the destination of the
tuple. After this step, each node posses the correct partial
parent image representing the global max-tree.

5 IMPLEMENTATION

The proposed parallel algorithm has been implemented in
C++ and is available on the open-source code repository
Github [46]. The coarse-grained parallelization across multi-
ple nodes has been realized using the Message Passing
Interface (MPI) [47]. For the shared-memory implementa-
tion C++11 native threads have been used. The algorithm
accepts data loaded from files in the Hierarchical Data
Format 5 (HDF5) format [48], which it will also store the
resulting parent image to.

5.1 Complexity

In this section the time and space complexity for the algo-
rithm steps of the distributed max-tree computation are laid
out. A summary can be found in Table 1. The used symbols
are explained in Section 4.1. All formulas are given for the
worst-case scenario.

The time and space complexity for loading the sub
images can be straight-forward inferred and amount to the
number of total pixels divided by the amount of available
processing nodes, as each of the receives an equally size
chunk of the entire problem. This requires to potentially
exchange one message in which the image dimensions are
broadcast. For the local max-tree computation each of the t
thread needs to allocated the part of parent image, that is
equal in size to the processed raw image, plus and addi-
tional area remapping that is solely dependent on the image
width, explaing the space complexity. The computational
complexity consists of the linear image-scan for each thread
and sub-image, which in turn need to do look-ups into the
associative container for the stacks, resulting in the first
summand. However, each thread needs to be merged with
its direct neighbors, which can be done in logarithmic fash-
ion as explained in Section 4.3, along the virtual split bound-
aries, i.e., the width of the image.

The next two steps involve the generation of the tuples.
In the worst case, for each of the boundary pixels—again
the width of the image—a tuple needs to created, resulting
in according space and time complexity. Although, in

practice the number will most of the times be much lower,
because the boundary zones mostly consists of connected
flat zones with shared parents nodes, resulting in early
outs. In fact, the average complexity should therefore be
closer to Oðw � logðd

2
ÞÞ, but is for obvious reasons dependent

on the analyzed data. Contrary to root tuples, which can be
generated entirely local, area tuples needs to be stitched
together across all processing nodes, resulting in the addi-
tional factor for the time complexity. Using a two prefix-
sum operations this information can be exchanged in a loga-
rithmic number of communication steps, explaining the
messaging complexity.

The main resolution consists of k iterations of sorting, line-
arly scanning and remapping the tuples for each of the avail-
able gray-levels of the gray depth d. It is assumed here that
the number of tuples per gray-level is more or less evenly dis-
tributed, resulting in the purposefully chosen term w

d (it would
actually cancel out with d). The sorting adds both logarithmic
components, over the number of tuples and nodes, as it
requires reordering them across all machines. One of the
major uncertainty factors is the iteration constant k, which is
dependent on the data. In the worst case, k is equal to the
number of processing nodes p as upper bound, given a single
tuple needs to visit each single machine due to transitivity.
However, in practice, the iteration count will remain low, typ-
ically only one or two, even for a high number of nodes, due
to the area stitching step and tuple inversions, effectivelymin-
imizing the canonicalizations. The corresponding message
complexity can be explained in a similar fashion. For each of
the d gray-levels, k iterations are performed requiring the
communication of the tuples using a logarithmic communica-
tion primitive across all cores. Thereby, the tuples can be
exchanged in whole, not requiring to break them down into
individual messages.

Finally, the resolved tuples need to be send back to the
partial image of origin and locally applied. The former step,
requires to exchange messages between each of the nodes.
Using a logarithmic communication tree, this can be done
ad hoc, explaining the message complexity. The later step
requires iterating over the whole image and normalizing
each of the pixels using an associative data structure with
logarithmic look up time. This is the reasons for the second
summand in the time complexity equation. The first can be
explained by the changing roots by directly assigning them
while iterating through the tuples.

Generally, the algorithm has complexity classes that are
either linear or linear-logarithmic, supporting good scalabil-
ity overall. The only bottleneck seems to be the iterative

TABLE 1
Overview of the Worst-Case Time, Space and Message Complexity of the Distributed Max-Tree Algorithm Steps

Time Space Messages

Image chunking OðnpÞ OðnpÞ Oð1Þ

Local max-tree Oð n
p�t� logðdÞ þ w� logðtÞÞ Oðnp þ t� wÞ �

Root tuple generation Oðw� dÞ Oðw� dÞ �

Area tuple generation Oðw� logðpÞÞ OðwÞ OðlogðpÞÞ

Tuple resolution Oðk� d� w
d � logðw� dÞ � logðpÞÞ Oðw� dÞ Oðk� d� logðpÞÞ

Redistribution Oðw� dÞ Oðw� dÞ OðlogðpÞÞ

Application Oðw� dþ n
p � logðw� dÞÞÞ Oðw� dÞ �

G€OTZ ET AL.: PARALLEL COMPUTATION OF COMPONENT TREES ON DISTRIBUTED MEMORY MACHINES 2591

constant k that could potentially degrade into the number of
used compute nodes p as upper bound. However, this is
rarely the case in practical use and presents an opportunity
for future research.

5.2 Implementation Details

For the algorithm implementation the Message Passing
Interface [49] programming framework has been used. It
provides low-level network communication primitives to
exchange one-to-one and many-to-many messages between
the participating distributed nodes. Efficient algorithms
usually rely on the later category of operations, the so-called
collectives, due to possibility of achieving a logarithmic scal-
ing, in time and number of messages, across the number of
cores. The proposed implementation makes use of two con-
crete function. On the one hand this is MPI_Allreduce

and on the other hand this is MPI_Scan. The latter is a con-
crete realization of the prefix-sum operation, accepting a
vector of input values and element-wise calculating the left
partial sum with respect to the passed binary operator. In
the proposed algorithm implementation is used at various
points, e.g., connecting the components in the halo areas or
to exchange the canonical points of the partial strong con-
nected components (see Section 4.5).

Specifically for the generation of the area tuples that con-
nects the halo zones, two prefix-sums, alternating from left
to right, are necessary. The first operations identifies con-
flicts in the canonical point labeling and the second propa-
gates them back. In order to retain the complete information
about all remapping rules for all nodes, the prefix-sum func-
tion (MPI_Scan) would require an exchange buffer with a
worst case memory complexity of Oðp � w � 2Þ—i.e., two
halo zones 2 � w for each of the p nodes. This is highly unde-
sirable, as it scales both, with the number of processing
nodes as well as the width of the image. One can realize this
operation more efficient, if only the outer boundaries of the
already merged images are communicated and the interme-
diary remapping rules are memorized in a data structure,
e.g., a map, across the two MPI_Scan calls. Then, the mem-
ory complexity of the sent buffer simply becomes Oðw � 2Þ.

The MPI framework does allow the registration of cus-
tom functions for collective calls, such as MPI_Scan. These
must be associative and optionally commutative, which is
satisfied by the above operation. In practice, however, such
a reduction function additionally needs to have static link-
age, or in other words, it must be a singleton. Furthermore,
due to the definition of the MPI API standard, it is also not
possible to pass any context or state, say an object pointer to
the aforementioned map, to the prefix-sum. For this reason,
a straight forward realization of the stateful MPI_Scan is
not possible. Yet, there is the alternative of working around
this limitation by accessing static data structures, e.g., a
map modeling the local execution context, within the scope
of the custom reduction operation. This could be a globally
defined variable or static class member.

In this case, though, the whole distributed max-tree
implementation effectively also becomes a singleton and
may not be used in multi-threaded environments, which is
sub-optimal for a number of analysis uses cases. Therefore, it
has been chosen an approach as sketched in Algorithm 7. A
set of potential remapping data-structures from different

threads is stored in a global associative container, here rules,
guarded by amutex. Before calling an MPI_Scan the remap-
ping data-structure must be stored and during the custom
reduction operation retrieved. In order to be able to correctly
retrieve the remapping data-structure a unique, shared key
must be chosen, for example the current thread identifier.

One enhancement to and possibility for future research
on the MPI standard versions could be, to directly allow
passing context pointers to every API call that utilizes
reduction operations. This pointer is simply forwarded to
the custom reduction operation on each invocation and
then used to realized stateful behaviour. In case a context is
not needed, it may be set to null. As a result, this would
remove the locking overhead and the code becomes cleaner
and more understandable.

Algorithm 7. Pseudo-Code of a Thread-Safe, Stateful
MPI Reduction Operation and Subsequent Usage by a
Prefix-Sum

1: mutex CREATE_MUTEX()
2: rules fg
3:
4: procedure REDUCTIONOPERATION(in, out)
5: LOCK ðmutexÞ
6: local rules FIND(rules, thread_id)
7: UNLOCK ðmutexÞ
8: MERGE (in, out, local rules) " actual work
9:
10: procedure CAPTURESTATE(local_rules)
11: LOCK ðmutexÞ
12: PUT (rules, local rules)
13: UNLOCK ðmutexÞ
14:
15: local rules fg
16: op MPI_OP_CREATE(REDUCTIONOPERATION)
17: CAPTURESTATE (local rules)
18: MPI_SCAN (. . ., op)

6 EXPERIMENTAL EVALUATION

6.1 Environment

The experiments have been performed on the JURECA sys-
tem [50] at the Juelich Supercomputing Centre. The system
consists of 1884 compute nodes with each having two Intel
Xeon E5-2680 v3 Haswell CPUs with 12 cores at 2,5 GHz and
Hyperthreading. 1604 compute nodes have 128 GiB, 128
nodes 256 GiB, 74 node 512 GiB and two nodes 1,024 GiB
DDR5 RAM. For our experimental evaluation the following
software libraries have been used—HDF5 1.8.18 paral-

lel and ParaStation MPI 5.1.9. Source code has been
compiled with g++ 5.4.0 optimization level 03. The avail-
able benchmark for the experiments relies on a maximum of
32 nodes and 24 threads.

6.2 Datasets

As for the used data, the tests have been performed on two
real-world images depicted in Fig. 4. The first dataset is a
Pl�eiades Ortho Product1 that was acquired over the Naples

1. http://www.intelligence-airbusds.com/en/23-sample-imagery

2592 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

metropolitan area (Italy) in 2013. It includes four Pan-
sharpened images with spatial and radiometric resolution
of 0.5 m and 8 bpp, respectively. This dataset was selected
due to its free availability, its sufficient size and spatial reso-
lution, which are relevant to the needs of the remote sensing
community for scalable and accurate methods that allow to
classify rapidly and accurately objects of interest over vast
areas, as was discussed in Section 1 (e.g., produce very high
resolution land cover mapping at the European scale). The
second dataset is an image that was taken at the ESO Para-
nal Observatory in Chile by the Visible and Infrared Survey
Telescope for Astronomy (VISTA). It portraits more than 84
million stars in the central regions of the Milky Way [51].
The Figs. 4a and 4b show the true-color image of both data-
sets. For the Naples dataset, experiments are performed
only using the first channel [52]. For the ESO, the RGB
image is simplified to a singular luminance channel, simi-
larly to how it was done by Moschini et al. [32] in order to
obtain similar conditions for benchmarking the proposed
algorithm. The luminance image is obtained through weigh-
ing and summing the channels, so that L ¼ 0:2126Rþ
0:7152Gþ 0:0722B. However, in order to show that the
algorithm scales regardless of the domain size of the gray-
levels, three different quantization levels are derived from
the luminance channel: 8-uint bpp, 16-uint bpp and 32-float
bpp [53]. Contrary to [32], the original size of the image is
preserved (9Gpx), since the JURECA system provides
node with large memory.

6.3 Experimental Setup

As discussed in Section 3 there are a number of other serial and
parallel versions of the algorithm.Most of them report different
value permutations for the computation time, memory

consumption, speed-up and scalability of their implementa-
tions. Carlinet et al. [31] provide their used benchmarks, data-
sets and the source codes in C++ for many different serial and
parallel algorithms.2 In order to compare results achievable by
using serial and parallel computing, the Berger et al. [16] algo-
rithm has been selected. Moschini et al. [32] proved that Berger
is the fastest sequential algorithm for images with high quanti-
zation values and even floating. However the algorithms
depend on theMILENA image processing library[54] (i.e., pro-
vide fundamental image types and I/O functionality) which
was not designed to handle very large images and floating val-
ues. For these reasons it was necessary to re-write a new C++
implementation of the algorithmwhich is library independent.
For the parallel processing case, the hybrid shared-memory
parallel max-tree algorithm developed by Moschini et al. [32]
was considered. The algorithm has been implemented in C
using POSIX threads and the source code is available publicly.3

Contrary to the MILENA library, this algorithm has been pro-
posed with the purpose of dealing with large-scale and high-
dynamic range images, and was therefore ready to be used
out-of-the-box. It may be argued that the comparison is not
entirely fair due to the different nature of the algorithms—i.e.,
shared-memory and distributed-memory—but can very well
be investigated for the same number of utilized cores. The
expectation naturally is that distributed memory implementa-
tion, as the one proposed here, are naturally going to have
more overhead compared to shared-memory versions. To the
best of our knowledge the only distributed max-tree algorithm
has been proposed recently by Kazemier et al. [55], but the
source codewas not obtainable at the time of writing as it is not
yet released.

The performance assessment of the algorithms proposed
by Berger and Moschini against the algorithm proposed in
this paper is conducted with two kinds of benchmarks. The
first type is focused on the computation time and speed-up,
while the second measures memory consumption. Each
benchmark configuration, meaning a particular node and
core count, is executed five times and the following statistics
are reported: mean m, standard deviation s, minimum,

Fig. 4. Benchmark images used in the experimental evaluation of the algorithm.

TABLE 2
Hybrid: Multithreading+MPI

Nodes 1 1 2 2 4 4 8 8

Threads 1 2 2 4 4 8 8 16

Cores 1 2 4 8 16 32 64 128 2. https://www.lrde.epita.fr/wiki/Publications/carlinet.14.itip
3. http://www.cs.rug.nl/ michael/ParMaxTree/

G€OTZ ET AL.: PARALLEL COMPUTATION OF COMPONENT TREES ON DISTRIBUTED MEMORY MACHINES 2593

maximum, and coefficient of variation (CV), defined as
n ¼ s

m
[56]. The use of the multithreading/MPI hybrid fea-

tures of the algorithm allows to span the MPI process on
each node available and to parallelize it locally using multi-
threading. For this reason, both types of benchmarks are
performed on each number of cores, as shown in Table 2.
The strategy is to evaluate first the performance on one core

of one node. Afterwards the number of threads are doubled
alternating with doubling the number of nodes, until the
maximum of 128 cores across nodes and threads is reached.

6.4 Speed-Up and Memory Consumption

The Fig. 5 depicts the experimental results related to the
processing time. For each dataset, the plot of the mean

Fig. 5. Execution time, speed-up and memory consumption curves of the proposed and Moschini’s algorithm for increasing number of threads. The
thread count for Moschini and Proposed (Shared) is increased locally on a single node. In case of the hybrid setting the number of threads and num-
ber of nodes are doubled alternately (refer to Table 2).

2594 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

execution time and the plot of the speed-up for increasing
number of cores is reported. In order to make a fair compari-
son with the state-of-the-art results (i.e., the shared-memory
algorithm [32]), the proposed algorithm is first run on a sin-
gle node. The algorithm’s execution time measures the
beginning and end of the main() function of the process
with the MPI rank 0 and the thread number 0. The speed-up
coefficient is computed as tp ¼ t1=tc. the fraction of the execu-
tion time with a single core and the execution time with mul-
tiple processing cores. Generally it can be said that the
proposed algorithm is able to gain a substantial speed-up for
both data sets and the different gray-levels quantizations.

For the 8 bpp case, the algorithm shows a constant, near
linear speed-up curve. In both datasets, the speed-up shows
an increasing behavior for up to 256 cores with no reason to
doubt its consistency for a higher number of cores, with an
execution time of 9.38 and 62.35 seconds for Naples and
ESO, respectively. However, for ESO 16 and 32 bpp the
speed-up flattens sooner, stabilizing at 64 and 16 cores,
respectively. With a high gray-level depth, the number of
tuples is increasing sharply, resulting in larger merge time.
The effect observable here is the Amdahl speed-up bound-
ary for a constant workload.

When these results are compared with the Moschini
algorithm, the proposed algorithm always provides faster
execution times. Unfortunately, for the dataset ESO 32 bpp
it was not possible to derive any conclusions since the

Moschini algorithm did not terminate. A more detailed
analysis of the execution time for the different phases of the
algorithm (see the Algorihtm 2) is depicted in Fig. 6. The
results are related only to a single dataset case (ESO 16 bpp)
because of space considerations. Each set of rows depicts a
a specific number of nodes (i.e., 1 node, 2 nodes, 4 nodes
and 8 nodes). The time distribution for increasing number
of threads is shown in each row. For the single node case,
the computation of the local max tree is the most time-con-
suming phase. This is a shared-memory scenario where the
three phases concerning the management of the tuples do
not take place. When the number of threads increases, the
second most costly phase is the local apply. The local merge
needs to be considered only beyond four threads. The
same conclusions can be derived for the remaining nodes
configuration. However, since it is a distributed memory
environment, the phases connected with tuple handling are
also present.

In the two-node case the tuple generation phase and the
global apply are mostly present, the weight of the tuple res-
olution becomes more pronounced the higher the node
count. This behavior can best be explained by the algorithm
complexity, explained in Table 1, showing a logarithmic
scaling with the number of processing cores. As has been
shown here, the parallel implementation allows to achieve a
significant processing time gain when compared with serial
processing. In Table 3 the processing times for the different

Fig. 6. Execution time distribution of the proposed algorithm for the ESO 16 bpp dataset. n signifies the number of utilized nodes and t the number of
threads for on each node.

G€OTZ ET AL.: PARALLEL COMPUTATION OF COMPONENT TREES ON DISTRIBUTED MEMORY MACHINES 2595

datasets are presented. When considering ESO 32 bpp,
which is the more challenging dataset used in this work, the
proposed algorithm computes the max-tree in 	27 minutes
(with 24 cores) while Berger converges only after 	3 hours.

Last but not least, comments should be made regarding
the memory consumption of the proposed algorithm. Con-
sidering the usual trade-off between memory consumption
and computational time, the experiments show the pro-
posed algorithm is more memory efficient and takes shorter
computational time than Berger and Moschini. Tables 4 and
5 scrutinize the memory consumption (in GB) for the differ-
ent algorithms with Naples and ESO 16 bpp images, respec-
tively, when computing on a single node. For each given
number of threads, it can be noticed that the average and
the maximum memory usage of all the tasks in the job are
always lower for the proposed algorithm. This means that
the algorithm is able to scale in terms of memory consump-
tion and communication cost with respect to large datasets
and the number of parallel cores. This is an important fac-
tor, considering most of the time the main constraint lies in
the memory size.

7 CONCLUSION

In this work a new parallel and distributed algorithm for
the computation of the max-tree of an image has been
presented. The parallelization strategy consists of split-
ting the entire problem, i.e., the image, into equal-sized
sub images, for which the partial max-trees are computed
that are subsequently merged at the split boundaries.
Using this algorithm, substantial speed-ups and scalabil-
ity could be achieved in computing the max-tree on large
real-world images, outperforming the state-of-the-art
shared memory implementation. In particular, faster exe-
cution time and significantly less memory consumption
can be achieved. The proposed algorithm allows to pro-
cess gray-scale image of arbitrary gray-level depth includ-
ing floating point values. This makes it suitable for the
usage in large-scale image classification task, such as land
cover type prediction, which is one of the major practical
application domains.

In future work, the equivalent min-tree algorithm
including distributed attribute filter are going to be imple-
mented. This will set a solid foundation for the next
research goal, the massive parallelization of the tree of
shapes [57]—a contrast independent component tree
representation of images.

ACKNOWLEDGMENTS

The authors would like to thank Igancio Toledo and Martin
Kornmesser for making the ESO/VVV Survey/D. Minniti
image with the id eso1242a publicly available.

TABLE 4
Memory Consumption (Mean Values in GB and Statistics)

for the Different Algorithms with Naples Image
when Using a Single Node

Algorithm Threads Mean m StDev s CV Min Max

Berger et al. [16] 1
59.65 0.327 0.005 59.35 60.19 Average
66.89 6.429 0.096 63.29 78.13 Maximum

Moschini et al.
[32]

1
91.99 1.955 0.021 89.64 93.52 Average
116.83 0.000 0.000 116.83 116.83 Maximum

2
89.03 0.590 0.007 88.10 89.64 Average
116.83 0.000 0.000 116.83 116.83 Maximum

4
82.82 1.988 0.024 81.19 86.09 Average
116.83 0.000 0.000 116.83 116.83 Maximum

8
79.33 3.161 0.040 73.99 81.80 Average
116.84 0.000 0.000 116.84 116.84 Maximum

16
74.23 5.571 0.075 64.96 79.14 Average
116.84 0.000 0.000 116.84 116.84 Maximum

24
62.45 4.593 0.074 58.83 70.03 Average
116.84 0.000 0.000 116.84 116.84 Maximum

Proposed

1
18.93 0.340 0.018 18.43 19.32 Average
22.36 0.106 0.005 22.22 22.45 Maximum

2
18.40 0.657 0.036 17.81 19.12 Average
23.13 0.106 0.005 22.94 23.18 Maximum

4
18.18 0.107 0.006 18.06 18.33 Average
22.92 0.178 0.008 22.68 23.17 Maximum

8
16.23 1.159 0.071 14.79 17.19 Average
23.07 0.544 0.024 22.44 23.64 Maximum

16
14.28 2.082 0.146 10.66 15.63 Average
24.24 0.686 0.028 23.24 25.15 Maximum

24
23.11 1.872 0.081 20.42 25.00 Average
22.35 0.099 0.004 22.18 22.41 Maximum

For each threads setup, the average and the maximum resident set size of all the
tasks in the job are reported, respectively.

TABLE 5
Memory Consumption (Mean Values in GB and Statistic)

for the Different Algorithms with ESO 16 bpp Image
when Using a Single Node

Algorithm Threads Mean m StDev s CV Min Max

Berger et al. [16] 1
292.30 0.217 0.001 291.93 292.48 Average
296.70 0.001 0.000 296.70 296.70 Maximum

Moschini et al.
[32]

1
457.71 0.777 0.002 456.98 458.61 Average
525.21 0.001 0.000 525.21 525.21 Maximum

2
472.53 0.898 0.002 471.54 473.76 Average
525.21 0.001 0.000 525.21 525.21 Maximum

4
436.67 1.761 0.004 434.06 437.89 Average
525.21 0.001 0.000 525.21 525.22 Maximum

8
409.87 3.323 0.008 406.41 414.84 Average
525.21 0.001 0.000 525.21 525.22 Maximum

16
383.99 2.466 0.006 381.68 387.10 Average
525.22 0.001 0.000 525.22 525.22 Maximum

24
380.92 5.482 0.014 376.22 388.25 Average
525.22 0.001 0.000 525.22 525.22 Maximum

Proposed

1
102.39 0.091 0.001 102.32 102.54 Average
114.13 0.052 0.000 114.08 114.20 Maximum

2
103.04 0.307 0.003 102.61 103.43 Average
113.84 0.028 0.000 113.81 113.88 Maximum

4
102.34 0.528 0.005 101.65 103.05 Average
117.99 0.036 0.000 117.95 118.03 Maximum

8
100.80 0.458 0.005 100.25 101.46 Average
121.55 0.068 0.001 121.48 121.62 Maximum

16
94.86 1.264 0.013 93.58 96.30 Average
124.43 0.185 0.001 124.27 124.72 Maximum

24
94.27 1.714 0.018 92.95 96.19 Average
124.82 0.241 0.002 124.46 125.05 Maximum

For each threads setup, the average and the maximum resident set size of all the
tasks in the job are reported.

TABLE 3
Processing Times (Mean Values in Minutes and Statistics)

of the Sequential Berger Algorithm

Images Mean m StDev s CV Min Max

Naples 13.54 0.484 0.001 13.53 13.55
ESO 8 bpp 113.76 6.011 0.001 113.62 113.91
ESO 16 bpp 184.56 9.877 0.001 184.35 184.73
ESO 32 bpp 185.67 19.457 0.002 185.34 186.21

2596 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

REFERENCES

[1] G. Matheron, Random Sets and Integral Geometry. New York, NY,
USA: Wiley, 1975.

[2] J. Serra, Image Analysis and Mathematical Morphology. London, U.K.
: Academic, 1982.

[3] E. J. Breen and R. Jones, “Attribute openings, thinnings, and gran-
ulometries,” Comput. Vis. Image Understanding, vol. 64, no. 3,
pp. 377–389, 1996.

[4] P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive con-
nected operators for image and sequence processing,” IEEE Trans.
Image Process., vol. 7, no. 4, pp. 555–570, Apr. 1998.

[5] L. Najman and J. Cousty, “A graph-based mathematical morphol-
ogy reader,” Pattern Recognit. Lett., vol. 47, pp. 3–17, 2014.

[6] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proc. Amer. Math. Soc., vol. 7, pp. 48–
50, 1956.

[7] G. K. Ouzounis and P. Soille, “The alpha-tree algorithm,” Publica-
tions Office of the European Union, 2012, doi: 10.2788/48773.

[8] P. Salembier and L. Garrido, “Binary partition tree as an efficient
representation for image processing, segmentation, and informa-
tion retrieval,” IEEE Trans. Image Process., vol. 9, no. 4, pp. 561–
576, Apr. 2000.

[9] R. Jones, “Component trees for image filtering and segmentation,”
in Proc. IEEE Workshop Nonlinear Signal Image Process., 1997.

[10] V. Caselles, B. Coll, and J. M. Morel, “Topographic maps and local
contrast changes in natural images,” Int. J. Comput. Vis., vol. 33,
no. 1, pp. 5–27, 1999.

[11] E. Carlinet and T. G�eraud, “MToS: A tree of shapes for multivari-
ate images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5330–
5342, Dec. 2015.

[12] P. Salembier and J. Serra, “Flat zones filtering, connected opera-
tors, and filters by reconstruction,” IEEE Trans. Image Process.,
vol. 4, no. 8, pp. 1153–1160, Aug. 1995.

[13] G. K. Ouzounis and M. H. F. Wilkinson, “Mask-based second-
generation connectivity and attribute filters,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 6, pp. 990–1004, Jun. 2007.

[14] M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone,
“Morphological attribute filters for the analysis of very high reso-
lution remote sensing images,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., 2009, pp. 2–3.

[15] J. A. Benediktsson, L. Bruzzone, J. Chanussot, M. Dalla Mura,
P. Salembier, and S. Valero, “Hierarchical analysis of remote sens-
ing data: Morphological attribute profiles and binary partition
trees,” in Proc. Int. Symp. Math. Morphology Appl. Signal Image Pro-
cess., 2011, pp. 306–319.

[16] C. Berger, T. Geraud, R. Levillain, N. Widynski, A. Baillard, and
E. Bertin, “Effective component tree computation with application
to pattern recognition in astronomical imaging,” in Proc. IEEE Int.
Conf. Image Process., 2007, pp. IV-41–IV-44.

[17] P. Teeninga, U. Moschini, S. C. Trager, and M. H. F. Wilkinson,
“Improved detection of faint extended astronomical objects
through statistical attribute filtering,” in Proc. 12th Int. Symp.
Math. Morphology Appl. Signal Image Process., 2015, pp. 157–168.

[18] I. K. E. Purnama, K. Y. E. Aryanto, and M. H. F. Wilkinson, “Non-
compactness attribute filtering to extract retinal blood vessels in
fundus images,” Int. J. E-Health Med. Commun., vol. 1, no. 3,
pp. 16–27, 2010.

[19] F. N. Kiwanuka and M. H. F. Wilkinson, “Automatic attribute
threshold selection for morphological connected attribute filters,”
Pattern Recognit., vol. 53, no. C, pp. 59–72, 2016.

[20] G. Cavallaro, N. Falco, M. D. Mura, and J. A. Benediktsson,
“Automatic attribute profiles,” IEEE Trans. Image Process., vol. 26,
no. 4, pp. 1859–1872, Apr. 2017.

[21] B. Song, M. Dalla Mura, P. Li, A. Plaza, J. M. Bioucas-Dias,
J. A. Benediktsson, and J. Chanussot, “Remotely sensed image
classification using sparse representations of morphological attri-
bute profiles,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8,
pp. 5122–5136, Aug. 2014.

[22] N. Falco, J. A. Benediktsson, and L. Bruzzone, “Spectral and spa-
tial classification of hyperspectral images based on ICA and
reduced morphological attribute profiles,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 11, pp. 6223–6240, Nov. 2015.

[23] M. Pedergnana, P. R. Marpu, M. Dalla Mura, J. A. Benediktsson,
and L. Bruzzone, “Classification of remote sensing optical and
LiDAR data using extended attribute profiles,” IEEE J. Sel. Topics
Signal Process., vol. 6, no. 7, pp. 856–865, Nov. 2012.

[24] N. Falco, M. Dalla Mura, F. Bovolo, J. A. Benediktsson, and
L. Bruzzone, “Change detection in VHR images based on morpho-
logical attribute profiles,” IEEE Geosci. Remote Sens. Lett., vol. 10,
no. 3, pp. 636–640, May 2013.

[25] G.K.Ouzounis,M. Pesaresi, and P. Soille, “Differential area profiles:
Decomposition properties and efficient computation,” IEEE Trans.
Pattern Anal.Mach. Intell., vol. 34, no. 8, pp. 1533–1548, Aug. 2012.

[26] N. Aldeborgh, G. K. Ouzounis, and K. Stamatiou, “Unsupervised
object detection on remote sensing imagery using hierarchical
image representations and deep learning,” in Proc. Conf. Big Data
Space, 2017, pp. 275–278.

[27] G. Ouzounis and M. Wilkinson, “A parallel dual-input max-tree
algorithm for shared memory machines,” in Proc. 8th Int. Symp.
Math. Morphology Appl. Signal Image Process., 2007, pp. 449–460.

[28] P. Flick, C. Jain, T. Pan, and S. Aluru, “A parallel connectivity
algorithm for De Bruijn graphs in metagenomic applications,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2015,
pp. 1–11.

[29] R. Jones, “Connected filtering and segmentation using component
trees,” Comput. Vis. Image Understanding, vol. 75, no. 3, pp. 215–
228, 1999.

[30] L. Najman and M. Couprie, “Building the component tree in
quasi-linear time,” IEEE Trans. Image Process., vol. 15, no. 11,
pp. 3531–3539, Nov. 2006.

[31] E. Carlinet and T. G�eraud, “A comparative review of component
tree computation algorithms,” IEEE Trans. Image Process., vol. 23,
no. 9, pp. 3885–3895, Sep. 2014.

[32] U. Moschini, A. Meijster, and M. Wilkinson, “A hybrid shared-
memory parallel max-tree algorithm for extreme dynamic-range
images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3,
pp. 513–526, Mar. 2018.

[33] R. E. Tarjan, “Efficiency of a good but not linear set union algo-
rithm,” ACM J., vol. 22, no. 2, pp. 215–225, 1975.

[34] W. H. Hesselink, “Salembier’s min-tree algorithm turned into
breadth first search,” Inf. Process. Lett., vol. 88, no. 5, pp. 225–229,
2003.

[35] D.Nist�er andH. Stew�enius, “Linear timemaximally stable extremal
regions,” in Proc. Eur. Conf. Comput. Vis., 2008, pp. 183–196.

[36] M. H. F. Wilkinson, “A fast component-tree algorithm for high
dynamic-range images and second generation connectivity,” in
Proc. Int. Conf. Image Process., 2011, pp. 1021–1024.

[37] P. Matas, E. Dokl�adalov�a, M. Akil, T. Grandpierre, L. Najman,
M. Poupa, and V. Georgiev, “Parallel algorithm for concurrent
computation of connected component Tree,” in Proc. Int. Conf.
Adv. Concepts Intell. Vis. Syst., 2008, pp. 230–241.

[38] M. H. F. Wilkinson, H. Gao, W. H. Hesselink, J. E. Jonker, and
A. Meijster, “Concurrent computation of attribute filters on shared
memory parallel machines,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 10, pp. 1800–1813, Oct. 2008.

[39] H. Samet and M. Tamminen, “Efficient component labeling of
images of arbitrary dimension represented by linear bintrees,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, no. 4, pp. 579–586,
Jul. 1988.

[40] J. Iverson, C. Kamath, and G. Karypis, “Evaluation of connected-
component labeling algorithms for distributed-memory systems,”
Parallel Comput., vol. 44, pp. 53–68, 2015.

[41] Y. Shiloach and U. Vishkin, “An O(logn) parallel connectivity
algorithm,” J. Algorithms, vol. 3, no. 1, pp. 57–67, 1982.

[42] N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederland-
sche Akademie Van Wetenschappen, vol. 49, no. 6, pp. 758–764, 1946.

[43] X. Qin and H. Jiang, “A dynamic and reliability-driven scheduling
algorithm for parallel real-time jobs executing on heterogeneous
clusters,” J. Parallel Distrib. Comput., vol. 65, no. 8, pp. 885–900,
2005.

[44] P. Soille, Morphological Image Analysis: Principles and Applications,
2nd ed. Berlin, Germany: Springer-Verlag, 2004.

[45] H. Shi and J. Schaeffer, “Parallel sorting by regular sampling,” J.
Parallel Distrib. Comput., vol. 14, no. 4, pp. 361–372, 1992.

[46] M. Goetz, “Distributed max tree implementation,” 2017. [Online].
Available: https://bitbucket.org/markus.goetz/

[47] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface. Cambridge, MA,
USA: MIT Press, 2000.

[48] HDF Group, “Hierachical data format 5.” 2017. [Online]. Avail-
able: http://www.hdfgroup.org/HDF5

G€OTZ ET AL.: PARALLEL COMPUTATION OF COMPONENT TREES ON DISTRIBUTED MEMORY MACHINES 2597

[49] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-perfor-
mance, portable implementation of theMPImessage passing inter-
face standard,” Parallel Comput., vol. 22, no. 6, pp. 789–828, 1996.

[50] J€ulich Supercomputing Centre, “JURECA: General-purpose super-
computer at J€ulich Supercomputing Centre,” J. Large-Scale Res.
Facilities, vol. 2, 2016, Art. no. A62.

[51] R. K. Saito, D. Minniti, B. Dias, M. Hempel, M. Rejkuba, J. Alonso-
Garc �ıa, B. Barbuy, M. Catelan, J. P. Emerson, O. A. Gonzalez,
P. W. Lucas, and M. Zoccali, “Milky way demographics with the
VVV survey,”AstronomyAstrophysics, vol. 544, 2012, Art. no. A147.

[52] Pleiades Ortho Product Dataset: Pan-Sharpened Green Band
Channel. (2017). [Online]. Available: https://b2share.eudat.eu/
records/f2a45218461842f5a4f886ee461d4bcc

[53] ESO Dataset: 3 Luminance Channels with Different Quantization
Levels. (2017). [Online]. Available: https://b2share.fz-juelich.de/
records/46f12d8f0d294928a9e7baf4ab56e95b

[54] R. Levillain, T. G�eraud, and L. Najman, “Why and how to design a
generic and efficient image processing framework: The case of the
Milena library,” in Proc. IEEE Int. Conf. Image Process., 2010,
pp. 1941–1944.

[55] J. J. Kazemier, G. K. Ouzounis, and M. H. F. Wilkinson, Connected
Morphological Attribute Filters on Distributed Memory Parallel
Machines. Berlin, Germany: Springer, 2017, pp. 357–368.

[56] H. Abdi, “Coefficient of variation,” in Encyclopedia of Research
Design. Thousand Oaks, CA, USA: SAGE Publications Inc., 2010,
pp. 169–171.

[57] S. Crozet and T. G�eraud, “A first parallel algorithm to compute
the morphological tree of shapes of nD images,” in Proc. 21st IEEE
Int. Conf. Image Process., 2014, pp. 2933–2937.

Markus G€otz received the bachelor of science
and master of science degrees in software engi-
neering fromHasso-Plattner-Institute, University of
Potsdam, Potsdam, Germany, in 2010 and 2014,
respectively. He is working toward the PhD degree
in line at the University of Iceland. During this
time has gathered experience in data analysis,
image processing and data mining during his
stays at Blekinge Tekniska H€ogskola, Sweden,
the European Organization for Nuclear Research
(CERN), Switzerland and mental images GmbH,

Germany. Currently, he is with the Juelich Supercomputing Center,
Germany. His research interests include high-performance computing,
parallel algorithms, machine learning as well as time series, and data
analysis.

Gabriele Cavallaro received the BS and MS
degrees in telecommunications engineering from
the University of Trento, Italy, in 2011 and 2013,
respectively, and the PhD degree in electrical
and computer engineering from the University of
Iceland, in 2016. At present, he is a postdoctoral
research assistant with the Juelich Supercomput-
ing Centre, Juelich, Germany. At this institute, he
is part of a scientific research group focused on
high productivity data processing within the Fed-
erated Systems and Data Division. His research

interests include remote sensing and analysis of very high geometrical
and spectral resolution optical data with the current focus on mathemati-
cal morphology and high performance computing. He was the recipient
of the IEEE GRSS Third Prize in the Student Paper Competition of the
2015 IEEE International Geoscience and Remote Sensing Symposium
2015 (Milan, Italy, July 2015). He serves as a reviewer of the IEEE Geo-
science and Remote Sensing Letters and the IEEE Journal of Selected
Topics in Earth Observations and Remote Sensing. He is a member of
the IEEE.

Thierry G�eraud received the PhD degree in sig-
nal and image processing from T�el�ecom Paris-
Tech, in 1997, and the Habilitation �a Diriger les
Recherches from the Universit�e Paris-Est, in
2012. He is one of the main authors of the Olena
platform, dedicated to image processing and
available as free software under the GPL licence.
His research interests include image processing,
pattern recognition, software engineering, and
object-oriented scientific computing. He is cur-
rently working with EPITAResearch and Develop-
ment Laboratory (LRDE), Paris, France. He is a
member of the IEEE.

Matthias Book received the doctoral degree from
the University of Leipzig. He is professor for soft-
ware engineering with the University of Iceland. He
worked as research manager for the German soft-
ware company adesso AG, led the Mobile Interac-
tion Group, University of Duisburg-Essen’s Ruhr
Institute for Software Technology (paluno), and
served as acting head of the Software Engineering
and Information Systems Chair, Chemnitz Univer-
sity of Technology. His research focus is on facili-
tating collaboration between domain experts and
technology experts in complex software projects.

Morris Riedel received the PhD degree from the
Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany, and started working in parallel and dis-
tributed systems in the field of scientific visua-
lization and computational steering of e-science
applications on large-scale HPC resources. He is
an adjunct associate professor with the School of
Engineering and Natural Sciences, University of
Iceland, Reykjavik, Iceland. He previously held
various positions with the Juelich Supercomputing
Centre, Juelich, Germany. At this institute, he is

also the head of a scientific research group focused on high productivity
data processing as a part of the Federated Systems and Data Division.
The given lectures in universities such as the University of Iceland, Univer-
sity of Applied Sciences of Cologne, Cologne, Germany, and the Univer-
sity of Technology Aachen (RWTH Aachen), Aachen, Germany include
high performance computing and big data, statistical data mining, and
handling of large datasets and scientific, and grid computing. His research
interests include high productivity processing of big data in the context of
scientific computing applications. He is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2598 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

