000845260 001__ 845260
000845260 005__ 20240619091236.0
000845260 0247_ $$2doi$$a10.1039/C7NR08520F
000845260 0247_ $$2ISSN$$a2040-3364
000845260 0247_ $$2ISSN$$a2040-3372
000845260 0247_ $$2pmid$$apmid:29498734
000845260 0247_ $$2WOS$$aWOS:000428787200033
000845260 037__ $$aFZJ-2018-02541
000845260 082__ $$a600
000845260 1001_ $$0P:(DE-Juel1)166459$$aGhosh Moulick, Ranjita$$b0$$eCorresponding author
000845260 245__ $$aNeuronal adhesion and growth on nanopatterned EA5-POPC synthetic membranes
000845260 260__ $$aCambridge$$bRSC Publ.$$c2018
000845260 3367_ $$2DRIVER$$aarticle
000845260 3367_ $$2DataCite$$aOutput Types/Journal article
000845260 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524487248_31897
000845260 3367_ $$2BibTeX$$aARTICLE
000845260 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845260 3367_ $$00$$2EndNote$$aJournal Article
000845260 520__ $$aBiomimetic membranes create opportunities for various applications, including the possibility of replacing interacting cells in a cell–cell contact. Here we have fractionated synthetic membranes using metal nano-grid structures where EphrinA5 (EA5), a neuronal adhesion promoter, was anchored via its Fc domain (immunoglobulin G (IgG)-domain). FRAP experiments were performed to check the confinement of the synthetic membrane within these nano-structures. Rat cortical primary neurons were cultured and live cell imaging techniques were used to monitor the neuronal interaction with these fractionated synthetic membranes. Computational imaging analysis of the corresponding images elucidated interesting details of the cellular behavior. The phenotypic cellular response on these nano-membrane fractions was found to be similar to that on non-fractionated synthetic membranes indicating that although the number of focal adhesion points was low (due to the reduced EA5 number) in the nano-sized membrane patches perhaps some other factors like metal grid boundaries might be playing a role in rendering the similarity.
000845260 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000845260 588__ $$aDataset connected to CrossRef
000845260 7001_ $$0P:(DE-Juel1)128715$$aPanaitov, Gregory$$b1
000845260 7001_ $$0P:(DE-Juel1)161235$$aDu, Liping$$b2
000845260 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b3
000845260 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4
000845260 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C7NR08520F$$gVol. 10, no. 11, p. 5295 - 5301$$n11$$p5295 - 5301$$tNanoscale$$v10$$x2040-3372$$y2018
000845260 8564_ $$uhttps://juser.fz-juelich.de/record/845260/files/c7nr08520f.pdf$$yRestricted
000845260 8564_ $$uhttps://juser.fz-juelich.de/record/845260/files/c7nr08520f.gif?subformat=icon$$xicon$$yRestricted
000845260 8564_ $$uhttps://juser.fz-juelich.de/record/845260/files/c7nr08520f.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845260 8564_ $$uhttps://juser.fz-juelich.de/record/845260/files/c7nr08520f.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845260 8564_ $$uhttps://juser.fz-juelich.de/record/845260/files/c7nr08520f.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845260 8564_ $$uhttps://juser.fz-juelich.de/record/845260/files/c7nr08520f.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845260 909CO $$ooai:juser.fz-juelich.de:845260$$pVDB
000845260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166459$$aForschungszentrum Jülich$$b0$$kFZJ
000845260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128715$$aForschungszentrum Jülich$$b1$$kFZJ
000845260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161235$$aForschungszentrum Jülich$$b2$$kFZJ
000845260 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161235$$a ICS-8$$b2
000845260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b3$$kFZJ
000845260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000845260 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000845260 9141_ $$y2018
000845260 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000845260 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845260 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845260 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845260 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845260 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845260 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845260 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845260 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845260 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000845260 920__ $$lyes
000845260 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000845260 980__ $$ajournal
000845260 980__ $$aVDB
000845260 980__ $$aI:(DE-Juel1)ICS-8-20110106
000845260 980__ $$aUNRESTRICTED
000845260 981__ $$aI:(DE-Juel1)IBI-3-20200312