001     845260
005     20240619091236.0
024 7 _ |a 10.1039/C7NR08520F
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a pmid:29498734
|2 pmid
024 7 _ |a WOS:000428787200033
|2 WOS
037 _ _ |a FZJ-2018-02541
082 _ _ |a 600
100 1 _ |a Ghosh Moulick, Ranjita
|0 P:(DE-Juel1)166459
|b 0
|e Corresponding author
245 _ _ |a Neuronal adhesion and growth on nanopatterned EA5-POPC synthetic membranes
260 _ _ |a Cambridge
|c 2018
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524487248_31897
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biomimetic membranes create opportunities for various applications, including the possibility of replacing interacting cells in a cell–cell contact. Here we have fractionated synthetic membranes using metal nano-grid structures where EphrinA5 (EA5), a neuronal adhesion promoter, was anchored via its Fc domain (immunoglobulin G (IgG)-domain). FRAP experiments were performed to check the confinement of the synthetic membrane within these nano-structures. Rat cortical primary neurons were cultured and live cell imaging techniques were used to monitor the neuronal interaction with these fractionated synthetic membranes. Computational imaging analysis of the corresponding images elucidated interesting details of the cellular behavior. The phenotypic cellular response on these nano-membrane fractions was found to be similar to that on non-fractionated synthetic membranes indicating that although the number of focal adhesion points was low (due to the reduced EA5 number) in the nano-sized membrane patches perhaps some other factors like metal grid boundaries might be playing a role in rendering the similarity.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Panaitov, Gregory
|0 P:(DE-Juel1)128715
|b 1
700 1 _ |a Du, Liping
|0 P:(DE-Juel1)161235
|b 2
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 3
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 4
773 _ _ |a 10.1039/C7NR08520F
|g Vol. 10, no. 11, p. 5295 - 5301
|0 PERI:(DE-600)2515664-0
|n 11
|p 5295 - 5301
|t Nanoscale
|v 10
|y 2018
|x 2040-3372
856 4 _ |u https://juser.fz-juelich.de/record/845260/files/c7nr08520f.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845260/files/c7nr08520f.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845260/files/c7nr08520f.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845260/files/c7nr08520f.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845260/files/c7nr08520f.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845260/files/c7nr08520f.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845260
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161235
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)161235
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21