000845267 001__ 845267
000845267 005__ 20210129233338.0
000845267 0247_ $$2doi$$a10.1021/acs.jpcb.7b11637
000845267 0247_ $$2ISSN$$a1089-5647
000845267 0247_ $$2ISSN$$a1520-5207
000845267 0247_ $$2ISSN$$a1520-6106
000845267 0247_ $$2pmid$$apmid:29595969
000845267 0247_ $$2WOS$$aWOS:000430784000004
000845267 0247_ $$2altmetric$$aaltmetric:36240671
000845267 037__ $$aFZJ-2018-02548
000845267 082__ $$a530
000845267 1001_ $$0P:(DE-Juel1)159365$$aSchulte, Marianne$$b0
000845267 245__ $$aProline Restricts Loop I Conformation of the High Affinity WW Domain from Human Nedd4-1 to a Ligand Binding-Competent Type I β-Turn
000845267 260__ $$aWashington, DC$$bSoc.$$c2018
000845267 3367_ $$2DRIVER$$aarticle
000845267 3367_ $$2DataCite$$aOutput Types/Journal article
000845267 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528899869_3086
000845267 3367_ $$2BibTeX$$aARTICLE
000845267 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845267 3367_ $$00$$2EndNote$$aJournal Article
000845267 520__ $$aSequence alignment of the four WW domains from human Nedd4-1 (neuronal precursor cell expressed developmentally down-regulated gene 4-1) reveals that the highest sequence diversity exists in loop I. Three residues in this type I β-turn interact with the PPxY motif of the human epithelial Na+ channel (hENaC) subunits, indicating that peptide affinity is defined by the loop I sequence. The third WW domain (WW3*) has the highest ligand affinity and unlike the other three hNedd4-1 WW domains or other WW domains studied contains the highly statistically preferred proline at the (i + 1) position found in β-turns. In this report, molecular dynamics simulations and experimental data were combined to characterize loop I stability and dynamics. Exchange of the proline to the equivalent residue in WW4 (Thr) results in the presence of a predominantly open seven residue Ω loop rather than the type I β-turn conformation for the wild-type apo-WW3*. In the presence of the ligand, the structure of the mutated loop I is locked into a type I β-turn. Thus, proline in loop I ensures a stable peptide binding-competent β-turn conformation, indicating that amino acid sequence modulates local flexibility to tune binding preferences and stability of dynamic interaction motifs.
000845267 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000845267 588__ $$aDataset connected to CrossRef
000845267 7001_ $$0P:(DE-Juel1)157799$$aPanwalkar, Vineet$$b1$$ufzj
000845267 7001_ $$0P:(DE-Juel1)165365$$aFreischem, Stefan$$b2
000845267 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b3$$ufzj
000845267 7001_ $$0P:(DE-Juel1)145681$$aDingley, Andrew J.$$b4$$eCorresponding author
000845267 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.7b11637$$gVol. 122, no. 15, p. 4219 - 4230$$n15$$p4219 - 4230$$tThe @journal of physical chemistry <Washington, DC> / B$$v122$$x1520-5207$$y2018
000845267 8564_ $$uhttps://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.pdf$$yRestricted
000845267 8564_ $$uhttps://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.gif?subformat=icon$$xicon$$yRestricted
000845267 8564_ $$uhttps://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845267 8564_ $$uhttps://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845267 8564_ $$uhttps://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845267 8564_ $$uhttps://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845267 909CO $$ooai:juser.fz-juelich.de:845267$$pVDB
000845267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159365$$aForschungszentrum Jülich$$b0$$kFZJ
000845267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157799$$aForschungszentrum Jülich$$b1$$kFZJ
000845267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165365$$aForschungszentrum Jülich$$b2$$kFZJ
000845267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b3$$kFZJ
000845267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145681$$aForschungszentrum Jülich$$b4$$kFZJ
000845267 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000845267 9141_ $$y2018
000845267 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845267 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845267 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845267 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845267 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845267 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845267 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845267 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845267 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845267 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845267 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2015
000845267 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845267 920__ $$lyes
000845267 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000845267 980__ $$ajournal
000845267 980__ $$aVDB
000845267 980__ $$aI:(DE-Juel1)ICS-6-20110106
000845267 980__ $$aUNRESTRICTED
000845267 981__ $$aI:(DE-Juel1)IBI-7-20200312