001     845267
005     20210129233338.0
024 7 _ |a 10.1021/acs.jpcb.7b11637
|2 doi
024 7 _ |a 1089-5647
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a pmid:29595969
|2 pmid
024 7 _ |a WOS:000430784000004
|2 WOS
024 7 _ |a altmetric:36240671
|2 altmetric
037 _ _ |a FZJ-2018-02548
082 _ _ |a 530
100 1 _ |a Schulte, Marianne
|0 P:(DE-Juel1)159365
|b 0
245 _ _ |a Proline Restricts Loop I Conformation of the High Affinity WW Domain from Human Nedd4-1 to a Ligand Binding-Competent Type I β-Turn
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1528899869_3086
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sequence alignment of the four WW domains from human Nedd4-1 (neuronal precursor cell expressed developmentally down-regulated gene 4-1) reveals that the highest sequence diversity exists in loop I. Three residues in this type I β-turn interact with the PPxY motif of the human epithelial Na+ channel (hENaC) subunits, indicating that peptide affinity is defined by the loop I sequence. The third WW domain (WW3*) has the highest ligand affinity and unlike the other three hNedd4-1 WW domains or other WW domains studied contains the highly statistically preferred proline at the (i + 1) position found in β-turns. In this report, molecular dynamics simulations and experimental data were combined to characterize loop I stability and dynamics. Exchange of the proline to the equivalent residue in WW4 (Thr) results in the presence of a predominantly open seven residue Ω loop rather than the type I β-turn conformation for the wild-type apo-WW3*. In the presence of the ligand, the structure of the mutated loop I is locked into a type I β-turn. Thus, proline in loop I ensures a stable peptide binding-competent β-turn conformation, indicating that amino acid sequence modulates local flexibility to tune binding preferences and stability of dynamic interaction motifs.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Panwalkar, Vineet
|0 P:(DE-Juel1)157799
|b 1
|u fzj
700 1 _ |a Freischem, Stefan
|0 P:(DE-Juel1)165365
|b 2
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 3
|u fzj
700 1 _ |a Dingley, Andrew J.
|0 P:(DE-Juel1)145681
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.7b11637
|g Vol. 122, no. 15, p. 4219 - 4230
|0 PERI:(DE-600)2006039-7
|n 15
|p 4219 - 4230
|t The @journal of physical chemistry / B
|v 122
|y 2018
|x 1520-5207
856 4 _ |u https://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845267/files/acs.jpcb.7b11637.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:845267
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159365
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157799
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165365
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145681
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2015
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21