001     845280
005     20210129233344.0
024 7 _ |a 10.1016/j.neucom.2017.08.035
|2 doi
024 7 _ |a 0925-2312
|2 ISSN
024 7 _ |a 1872-8286
|2 ISSN
024 7 _ |a 2128/18233
|2 Handle
024 7 _ |a pmid:29398782
|2 pmid
024 7 _ |a WOS:000418370200032
|2 WOS
037 _ _ |a FZJ-2018-02561
082 _ _ |a 610
100 1 _ |a Collell, Guillem
|0 0000-0003-1998-8621
|b 0
245 _ _ |a A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data
260 _ _ |a Amsterdam
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524488430_26620
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples. However, rebalancing methods entail asymmetric changes to the examples of different classes, which in turn can introduce their own biases. Furthermore, these methods often require specifying the performance measure of interest a priori, i.e., before learning. An alternative is to employ the threshold moving technique, which applies a threshold to the continuous output of a model, offering the possibility to adapt to a performance measure a posteriori, i.e., a plug-in method. Surprisingly, little attention has been paid to this combination of a bagging ensemble and threshold-moving. In this paper, we study this combination and demonstrate its competitiveness. Contrary to the other resampling methods, we preserve the natural class distribution of the data resulting in well-calibrated posterior probabilities. Additionally, we extend the proposed method to handle multiclass data. We validated our method on binary and multiclass benchmark data sets by using both, decision trees and neural networks as base classifiers. We perform analyses that provide insights into the proposed method.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Prelec, Drazen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.neucom.2017.08.035
|g Vol. 275, p. 330 - 340
|0 PERI:(DE-600)1479006-3
|p 330 - 340
|t Neurocomputing
|v 275
|y 2018
|x 0925-2312
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/845280/files/Guillem18.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/845280/files/Guillem18.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/845280/files/Guillem18.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/845280/files/Guillem18.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/845280/files/Guillem18.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/845280/files/Guillem18.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:845280
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROCOMPUTING : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21