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a b s t r a c t 

Class imbalance presents a major hurdle in the application of classification methods. A commonly taken 

approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging 

(bagging) combined with either undersampling or oversampling of the minority class examples. How- 

ever, rebalancing methods entail asymmetric changes to the examples of different classes, which in turn 

can introduce their own biases. Furthermore, these methods often require specifying the performance 

measure of interest a priori, i.e., before learning. An alternative is to employ the threshold moving tech- 

nique, which applies a threshold to the continuous output of a model, offering the possibility to adapt 

to a performance measure a posteriori , i.e., a plug-in method. Surprisingly, little attention has been paid 

to this combination of a bagging ensemble and threshold-moving. In this paper, we study this combi- 

nation and demonstrate its competitiveness. Contrary to the other resampling methods, we preserve the 

natural class distribution of the data resulting in well-calibrated posterior probabilities. Additionally, we 

extend the proposed method to handle multiclass data. We validated our method on binary and mul- 

ticlass benchmark data sets by using both, decision trees and neural networks as base classifiers. We 

perform analyses that provide insights into the proposed method. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

a  

t  

p  

e  

a  

p  

t  

s  

a  

t  

f  

o  

p  

d  
1. Introduction 

Dealing with a class imbalance in classification is an impor-

tant problem that poses major challenges [1] . Imbalanced data sets

frequently appear in real-world problems, such as in fault and

anomaly detection [2,3] , fraudulent phone call detection [4] and

medical decision-making [5] , to name a few. Standard learning al-

gorithms are often guided by global error rates and hence may

ignore instances of the minority class, leading to models biased

towards predicting the majority class. Several methods have been

proposed to alleviate this problem (see, e.g., [6,7] for reviews). Of-

ten, a first choice consists of preprocessing the data by resampling

to balance the class distribution [8,9] . This is often achieved by ei-

ther randomly oversampling (ROS) the minority class [9] or ran-

domly undersampling (RUS) the majority class [10] . More sophis-
∗ Corresponding author at: MIT Sloan Neuroeconomics Lab, Massachusetts Insti- 

tute of Technology, Cambridge, MA 02139, USA. 

E-mail addresses: gcollell@kuleuven.be (G. Collell), dprelec@mit.edu (D. Prelec), 

kaustubh.patil@gmail.com (K.R. Patil). 

t  

t  

[  

f  

o  

http://dx.doi.org/10.1016/j.neucom.2017.08.035 

0925-2312/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article
icated methods that generate synthetic minority class instances

re also a popular choice, e.g., the synthetic minority oversampling

echnique (SMOTE [9] ). We will collectively call these data pre-

rocessing methods as rebalancing mechanisms as they, in gen-

ral, aim to make the training data more balanced. This will also

void confusion with other resampling mechanisms, e.g., the sim-

le bootstrap. Rebalancing is often combined with ensembles as

hey show superior performance to a single classifier [11] . Many

uch combinations have been shown to be effective for imbal-

nced data classification [6,12,13] . However, there are several po-

ential drawbacks of rebalancing methods: (1) potential loss of in-

ormative data when undersampling, (2) changes in the properties

f the data, such as asymmetric changes in the density of exam-

les of different classes, which in turn can cause the models to in-

uce unwanted biases, e.g., miscalibrated posterior probability es-

imates [14,15] , (3) it is often not evident which class distributions

o use for a given dataset and a performance measure of interest

16] (wrapper methods [17] can be employed to tune the model

or a given measure, but they are computationally expensive and

ften cater towards only a single measure, e.g., either accuracy or
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Confusion matrix in binary classification. 

Predicted positive Predicted negative 

Actual positive TP (true positive) FN (false negative) 

Actual negative FP (false positive) TN (true negative) 
1-score), and (4) it is nontrivial to extend the sampling heuristics

ormally defined for binary data to multiclass data as there can be

ultiple minority/majority classes [18] . 

Moving decision thresholds is another technique to deal with

lass imbalance. The main difference between rebalancing and

hreshold-based methods is that the former relies on data pre-

rocessing before learning happens, whereas the latter relies on

anipulating the continuous output of a learned model, e.g.,

lass weights or posterior probabilities. Among other proponents,

rovost [19] advocated for threshold-moving as a method to deal

ith class imbalance. Nevertheless, surprisingly, little attention has

een paid to this technique, often to an extent that it is not even

onsidered for comparison when new methods are proposed. 

While this technique has been utilized in combination with

ome popular learning methods including a small ensemble [19–

1] . However, to our knowledge, the combination of threshold-

oving with a bagging ensemble has not been thoroughly inves-

igated. As is evident, threshold-moving depends on reliable con-

inuous estimation of the output; therefore, bagging ensembles are

 good candidate to combine with threshold-moving as they are

nown to provide good probability estimates [22,23] . In this work,

e study threshold-moving combined with bagging ensembles and

how that it is a competitive method with several advantages. 

In particular, we seek a method that provides well-calibrated

osterior probability estimates. An important advantage of such

 method is that it can be utilized as a plug-in method where

he threshold can be set a posteriori , i.e., at the test phase. This

rovides an opportunity to achieve good performance on different

easures using the same model [24] . This is a major improvement

ver other methods, e.g., cost-sensitive methods and rebalancing,

hich require the performance measure of interest to be speci-

ed at the learning phase. Here, we propose Probability Thresh-

ld bagging (PT-bagging) that, as we will show, passes as a plug-

n method. The main motivation behind PT-bagging is to leverage

he advantages of bagging while avoiding the problems that rebal-

ncing methods inevitably entail, as described above. The proposed

ethod PT-bagging addresses those problems and possesses sev-

ral desirable properties: 

(1) It is a plug-in method that maximizes a performance mea-

sure of interest without retraining, but rather by just apply-

ing an appropriate threshold a posteriori . By contrast, rebal-

ancing methods are not flexible and need computationally

expensive parameter tuning, e.g., to find which class propor-

tions to use for learning via a wrapper approach [17] . 

(2) It consistently performs close to the best possible macro-

accuracy and macro F1 performances without the need

to empirically find the optimal threshold (e.g., by cross-

validation). Obtaining a validation set for tuning can be com-

putationally costly, might not always be possible, or might

be financially prohibitive (e.g., due to data collection costs). 

(3) It can be extended to handle the multiclass setting when ap-

propriate thresholds for a performance measure of interest

are available, e.g., macro-accuracy. 

We provide a theoretical analysis on when optimal macro-

ccuracy performance is guaranteed. However, for other measures,

uch as the macro F1-score, it is not always possible to obtain

 closed-form expression for the optimal thresholds [25] . Never-

heless, we show that our new, simple and sensible threshold is

lose to the optimal threshold, and that PT-bagging achieves higher

acro F1-score performance compared to other methods. In this

espect, we make two additional contributions: (1) the proposal of

 threshold for maximizing the macro F1-score, and (2) a compar-

son and analysis of the full potential of the methods, which we

efine as their maximum attainable performance if the optimal

hreshold were known. 
The rest of this paper is organized as follows: in Section 2 we

rovide the relevant background, describe some popular resam-

ling methods, and discuss their potential flaws. In Section 3 , we

escribe our proposed method, PT-bagging, and provide a theoret-

cal justification of its performance. In Section 4 , we describe our

xperimental setup. In Section 5 , we present a comprehensive set

f empirical tests and discuss the results. Finally, we comment on

he implications of our findings and propose future lines of re-

earch. 

. Background 

We consider the standard classification setting where a learn-

ng algorithm learns from the training data tuples { x i , y i } N i =1 
, where

 i ∈ X are features that can be either continuous, ordinal or cate-

orical and y i ∈ C = { 1 , . . . , m } are discrete class labels. The goal of

earning is to estimate a predictor ˆ f : X → C that approximates the

rue underlying function f : X → C . The model learned, ˆ f , is then

sed to make predictions on unseen test data { x j } M 

j=1 
. For binary

ata, we have y i ∈ {0, 1} and without loss of generality we denote

he minority class (i.e., the class with lower frequency in the train-

ng data) as the class 1. We refer to the class-specific thresholds

s λi , i = 1 , . . . , m . Their application to the classifier output is de-

cribed below ( Algorithm 1 , step 2.4). We make two assumptions:

1) the probability distribution of the test data is similar to that of

he training data, and (2) the class distribution of the training data

rovides an accurate estimate of their respective underlying prior

robabilities. 

.1. Performance measures for imbalanced data 

The commonly used measure of accuracy (correct classification

ate) is a good metric when data sets are balanced. However, it can

e misleading for imbalanced data. For example, the naïve strategy

f classifying all the examples into the majority class would obtain

9% accuracy in a data set composed of 99% examples of this class.

herefore, other measures are necesary when dealing with imbal-

nced data. 

Several performance measures have been proposed in imbal-

nced learning, all of which are computable from the elements of

he confusion matrix ( Table 1 ). Some of the most extensively used

easures are: 

TNR = 

TN 

TN + FP 

; Recall (= TPR) = 

TP 

TP + FN 

;

Precision = 

TP 

TP + FP 

; FPR = 

FP 

TN + FP 

acro − accuracy = 

TPR + TNR 

2 

; G − mean = 

√ 

TPR × TNR ;

1 − score = 

2 × Precision × Recall 

Precision + Recall 
= 

2TP 

2TP + FP + FN 

The macro F1-score is a widely used measure and is calculated

y considering each class separately as the positive class and then

veraging their corresponding F1-scores. In addition, the receiver

perating characteristic (ROC) curve is often employed [6] . The ROC

urve is generated by plotting the TPR ( y -axis) and the FPR ( x -axis)

hile moving through the whole spectrum of decision thresholds.
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The area under the ROC curve (AUROC) – generally computed nu-

merically – is often a measure of interest that provides a summary

of the ROC curve as a single number. However, ROC curves suffer

from a serious limitation for evaluating performance under class

imbalance. When data are highly imbalanced, ROC curves fail to

capture large changes in the number of false positives (FP) since

the denominator of FPR is largely dominated by TN. For this rea-

son, precision-recall (PR) curves are preferred over ROC curves for

imbalanced data [7] and are therefore our choice here. PR curves

are computed by moving the decision threshold and plotting re-

call ( x -axis) and precision ( y -axis). Analogous to the ROC curve, the

area under the PR curve (AUCPR) is typically employed as a sum-

mary measure. 

2.2. Learning from imbalanced data 

Many solutions have been proposed to deal with imbalanced

data. These solutions mainly fall into one of the following three

major strategies: (1) cost-sensitive learning, (2) rebalancing mech-

anisms, and (3) threshold-moving. These strategies are briefly dis-

cussed below (for a detailed account see [6,7,19] ). 

(1) Cost-sensitive learning places different misclassification costs

on the different classes. Higher misclassification costs for the

minority class can be imposed by a loss function. In fact, by

altering the training class distribution, rebalancing mecha-

nisms effectively im pose different misclassification costs and

can be deemed as equivalent to cost-sensitive learning [26] .

For this reason, we only consider rebalancing methods in

this article. 

(2) Rebalancing mechanisms resample the data to make the

training data more balanced. Such data preprocessing solu-

tions do not require modifying the learning algorithm and

therefore can be employed with existing learning algorithms.

(3) In threshold-moving, a model is learned from the data set

with either the original or modified class proportions and its

continuous output is converted into a class label by applying

an appropriate threshold. 

The techniques relevant to this work are discussed in the fol-

lowing sections. 

2.3. Bagging ensemble 

Ensemble methods use a set of classifiers to improve upon in-

dividual classifiers’ performance [27] . Two popular ensemble tech-

niques are boosting and bagging [28] . In this work, we focus on

bagged ensembles since, in general, boosted ensembles do not per-

form better with imbalanced data [6] . 

In bagging ( Algorithm 1 ), a set of base classifiers are learned

from different samples of the given training set. At the predic-

tion time, the outputs of the base classifiers are aggregated. The

main principle behind bagging’s performance, given that each base
Algorithm 1 

Pseudo-code for the bagging ensemble. 

1. Learning: 

1.1. Input: A training set S = { ( x i , y i ) } N i =1 
; y i ∈ C = { 1 , . . . , m } , where m is

1.2. Generate n training data sets by sampling 1 S . 

1.3. Learn n base classifiers from each sample. 

2. Prediction: 

2.1. Input: an instance x, n base classifiers, a probability threshold λk for 

2.2. Each base classifier i gives a probabilistic estimate ̂ P i ( y = k | x ) for ea

2.3. Compute averages of probabilistic predictions for each class k ∈ { 1 , . .
2.4. Rank each class k ∈ { 1 , . . . , m } according to: ̂ P ( y = k | x ) / λk . 

2.5. Assign the label for which the score in 2.4 is the highest. 

1 The sampling mechanism has been purposefully left unspecified. It is spec
lassifier performs above chance, is that the averaging reduces the

ariance of individual classifiers without increasing their bias. Bag-

ing generally performs well with unstable base learners for whom

mall changes in the training data lead to large changes in the

earned model [28] . For example, decision trees (DT) and neural

etworks (NN) are unstable classifiers and thus suitable for bag-

ing. 

Clearly, different sam pling mechanisms ( Algorithm 1 , step 1.2)

nd different thresholds (step 2.4) can be used which will yield

ifferent models and different outputs. All the methods tested here

se a variation of Algorithm 1 , and we will discuss their sampling

echanisms and thresholds in the next section. 

Furthermore, different aggregation methods can be used to

ombine the outputs of the base classifiers, e.g., hard-voting to

ake crisp class assignments or soft-voting for probabilistic pre-

ictions. It is known that soft-voting generally provides better

erformance than hard-voting [21,29,30] . We, therefore, use soft-

oting in this work ( Algorithm 1 , step 2.3). 

.4. Resampling mechanisms 

In this section, we briefly describe the different resampling

echanisms that can be used in step 1.2 in Algorithm 1 . One of the

implest ways to resample is to sample each instance with equal

robability with replacement, i.e., a non-parametric bootstrap, as

n the original bagging algorithm [28] . This sampling mechanism

s not currently popular with imbalanced data as it preserves

he imbalanced class distribution, which is thought to be detri-

ental to learning. However, we argue here that this mechanism

orks well when appropriate thresholds are available. Our pro-

osed method, PT-bagging (discussed below), uses this sampling

echanism. 

Commonly used resampling mechanisms for imbalanced data

here called rebalancing methods) try to balance the class pro-

ortions. Perhaps the simplest and most popular undersampling

echanism used for ensemble learning is referred to as exactly

alancing (EB). EB resampling preserves the minority class in-

tances while randomly undersampling majority class instances

uch that the class proportions are exactly balanced. Roughly bal-

ncing (RB) is a powerful variation of EB that improves perfor-

ance by increasing diversity of the classifiers [12] . RB, like EB,

reserves the minority class instances but undersamples the ma-

ority class instances as determined by a negative binomial distri-

ution, in effect roughly balancing the class proportions. Oversam-

ling mechanisms, on the other hand, over-sample the minority

lass examples. Previous studies indicate that undersampling gen-

rally performs better than oversampling [6,31,32] . Furthermore,

ndersampling is computationally more efficient than oversam-

ling since it discards a large part of the training data. 

More sophisticated hybrid methods that combine oversam-

ling and undersampling have been proposed. One of the most

opular such methods is the synthetic minority oversampling
 the number of class labels and n the number of base classifiers. 

each class k . 

ch label k ∈ { 1 , . . . , m } given a test instance x . 

 . , m } : ̂ P ( y = k | x ) = 

1 
n 

∑ n 
i 

̂ P i ( y = k | x ) . 

ified in the context of the respective methods. 
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echnique (SMOTE) [9] , which generates new minority class exam-

les by interpolation while undersampling the majority class ex-

mples. SMOTE often performs well in combination with a bagging

nsemble. More recent methods such as Random Balance (RNB)

ave combined insights from both, SMOTE and RB [33] . Specifically,

NB randomly selects a class proportion and oversamples one of

he classes accordingly with interpolated examples using SMOTE

hile the other class is undersampled. RNB aims at increasing the

iversity in the base classifiers, which in turn often improves the

nsemble performance. It is important to notice that the threshold

f 0.5 is normally used with these rebalancing methods. 

Rebalancing methods, however, present a number of potential

hortcomings. An important side effect of rebalancing is that it

an lead to miscalibrated posterior probability estimates, as recent

tudies have found [14,15] . Another – usually unnoticed – potential

roblem of resampling techniques is that of the prior shift, i.e., dif-

ering training (balanced) and test (natural class proportion) distri-

utions [15] . This might create additional problems since a model

earned on a balanced data is then evaluated in a different setting.

astly, the original density of examples is asymmetrically modified

or the classes (e.g., by undersampling the majority class or over-

ampling the minority class), which might lead to undesired biases

n the model. By contrast, the simple bootstrap sampling does not

odify the data distribution, which led us to hypothesize that it

ill be less prone to these problems. 

. Probability threshold bagging (PT-bagging) 

Several studies have considered threshold-moving as a method

o deal with class imbalance [20,34] . For example, Maloof

20] compared threshold-moving to RUS using a single classifier

nd concluded that they achieve similar performance in terms of

OC. However, to the best of our knowledge, previous studies have

ot considered threshold-moving in combination with bagging. 

The basic idea behind PT-bagging is to leverage bagging

 Algorithm 1 ) to first obtain well calibrated posterior esti-

ates and appropriately threshold them afterward according to

he performance measure to be maximized. PT-bagging learns

ase classifiers from simple bootstrap replicates of the original

ata set, which preserves the class distribution. Then, following

lgorithm 1 , probabilistic predictions for each class k are aver-

ged across the base classifiers to obtain a final posterior proba-

ility estimate ̂ P ( y = k | x ) (step 2.3). To get a class label, first, the

robability estimate is transformed into a score by dividing it by

ts respective class threshold λk (step 2.4). The class k for which

his score ̂ P ( y = k | x ) / λk is the largest is then assigned. Accord-

ng to the categorization proposed by Hernandez-Orallo et al. [35] ,

T-bagging employs a score-driven threshold, as opposed to, e.g.,

 fixed threshold of 0.5 used by rebalancing methods. Crucially,

n PT-bagging the thresholds can be adapted to maximize a mea-

ure of interest. To maximize macro-accuracy, the optimal thresh-

ld for class k is equal to the class prior in the training data, i.e.,

k = P ( y = k ) (see Theorem 1 ). For instance, if the averaged poste-

ior probability for class 0 is ̂ P ( y = 0 | x ) = 0 . 7 , and the prior of this

lass is 0.8 (i.e., P ( y = 0 ) = 0.8), then its score is 0.7/0.8 = 0.875,

nd consequently the score for class 1 is 0.3/0.2 = 1.5. Thus, class

 will be assigned even though it has a lower posterior. The cal-

ulation of this score is identical in the multiclass setting. We

enceforth specify the method with the threshold that maximizes

 particular measure using a subscript: PT MA -bagging for macro-

ccuracy and PT F1 -bagging for macro F1-score. We employ the no-

ation PT-bagging without a subscript when we refer to measures

hat are independent of the threshold (e.g., AUCPR and posterior

robability calibration). 
.1. Threshold for maximizing macro-accuracy 

The following theoretical result aims to provide insight into the

echanism behind the performance of threshold-moving for the

acro-accuracy measure. The reader should note that the main

essage of Theorem 1 is not finding the optimal thresholds (or

isclassification costs) for the macro-accuracy measure, which are

nown to be equal to the inverse of the priors, but rather a con-

tructive proof of an algorithm that maximizes macro-accuracy for

inary and multiclass data. Theorem 1 ’s proof shows that a nec-

ssary condition for a method to maximize macro-accuracy is to

ave good estimates of the posterior probabilities ̂ P ( y = k | x ) for

ach class k . To simplify notation and improve readability, we con-

ider the binary class problem. The same proof trivially generalizes

o a multiclass setting. 

heorem 1. Proposition: Let P ( y = j ) be the prior of class j and

 ( y = j| x ) be the true (unknown) posterior probability of class j given

. If proportions of each class are unchanged from training to test,

hen predicting the class k such that 

 = argmax 
j 

P ( y = j| x ) 
P ( y = j ) 

(1) 

aximizes the macro-accuracy. 

roof. Let C = { 1 , 0 } be the class labels (positive = 1 and nega-

ive = 0). Let d be a random variable corresponding to the class

redicted by a classifier. Thus, P ( d = k | x ) is the predicted probabil-

ty of a model for class k given x . 

We shall first derive the population expression of macro-

ccuracy. Recall that macro-accuracy is defined as ( TPR + TNR ) / 2

here TPR = TP /P and TNR = TN /N. Recall that P = TP + FN

nd N = TN + FP . Let us first derive a continuous expression for

PR. Notice first that TP / (P + N) = ∫ 
R 

P ( y = 1 | x ) P ( d = 1 | x ) p(x ) dx

nd that P/ (P + N) = P ( y = 1 ) . Thus, the ratio of the first expres-

ion over the second is equal to TPR = TP / P . That is, 

PR = 

∫ R P ( y = 1 | x ) P ( d = 1 | x ) p ( x ) dx 

P ( y = 1 ) 

The derivation of TNR is analogous. Thus, dividing the sum of

PR and TNR by 2 yields the expression of macro-accuracy: 

1 

2 

∫ R P ( y = 1 | x ) P ( d = 1 | x ) p ( x ) dx 

P ( y = 1 ) 

+ 

1 

2 

∫ R P ( y = 0 | x ) P ( d = 0 | x ) p ( x ) dx 

P ( y = 0 ) 

By entering both terms into the same integral: 

1 

2 

∫ 
R 

{
P ( y = 1 | x ) 

P ( y = 1 ) 
P ( d = 1 | x ) + 

P ( y = 0 | x ) 
P ( y = 0 ) 

P ( d = 0 | x ) 
}

p ( x ) dx 

(2) 

Therefore, maximizing the integral in ( 2 ) is equivalent to asking

or the optimal choice of P ( d = 1 | x ) and P ( d = 0 | x ) for a given x –

n other words, how to assign class labels 1 or 0 in a wise way

perhaps probabilistically), given x . Notice that the bracket inside

he integral in ( 2 ) is nothing but a convex combination: 

P ( y = 1 | x ) 
P ( y = 1 ) 

βx + 

P ( y = 0 | x ) 
P ( y = 0 ) 

( 1 − βx ) (3) 

here we defined βx := P ( d = 1 | x ) . Thus, by monotonicity, the

onvex combination ( 3 ) is maximized at x if and only if we

lace probability 1 to the largest term. That is to say, an optimal

ethod assigns the positive class 1 with probability 1 if the term
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(

P ( y = 1 | x ) /P ( y = 1 ) is the largest or assigns the negative class with

probability 1 if P ( y = 0 | x ) /P ( y = 0 ) is the largest. That is, 

βx := P ( d = 1 | x ) = 

{ 

1 , i f P ( y =1 | x ) 
P ( y =1 ) 

> 

P ( y =0 | x ) 
P ( y =0 ) 

0 , Otherwise 
(4)

This is indeed the method proposed above, in Eq. (1) . �
Critically, we note that the optimal method of Eq. (4) will not

have the true P ( y = 1 | x ) at hand but an estimation 

̂ P ( y = 1 | x ) in-

stead. Notice also that all the other quantities needed to make a

decision in ( 4 ) are known constants, i.e., P ( y = 1 ) and P ( y = 0 )

(i.e., the thresholds). Therefore, the good performance of the

method totally relies on having good posterior probability esti-

mates ̂  P ( y = 1 | x ) . 

3.2. Threshold for maximizing macro F1-score 

Unlike macro-accuracy, there is no closed-form expression for a

threshold that maximizes the macro F1-score [25] . In general, in-

creasing the threshold increases the precision of the minority class

at the expense of decreased recall. It is, however, known that 0.5

is the upper bound on the optimal threshold for the F1-score [25] .

In the absence of any additional information and tuning, we set

the threshold for the minority class to ( P ( y = 1 ) + 0 . 5 ) / 2 . The ra-

tionale behind this threshold is that it is set midway between the

threshold for maximizing the average recall (i.e., the training set

class prior) and the upper bound on the threshold for maximizing

the F1-score (i.e., 0.5). 

Note that methods have been proposed to estimate the optimal

threshold for maximizing the F1-score but they require additional

data for fine-tuning and are susceptible to the Winner’s curse [25] .

Using tuning methods is difficult for most of the datasets used

here, as they are relatively small. Importantly, our aim here was

to test a tuning-free threshold. However, finding better thresholds,

when possible, can conceivably result in further improvements. 

The reader should note that the proposed threshold is defined

for the binary class setting. Its extension to the multiclass setting

will be considered in future work. 

4. Experimental setup 

We used the R statistical environment ( http://www.r-project.

org/ ) with corresponding packages and default parameters unless

otherwise specified. 
Table 2 

Overview of the binary data sets obtained from UCI, HDDT

convenience). 

Dataset #Inst #Attr #Num %Min D

pima 768 8 8 34.5 br

ion 351 34 34 35.9 cl

sonar 208 60 60 46.6 ec

spectf ∗ 267 44 44 20.6 ha

phon ∗ 5404 5 5 29.3 le

page ∗ 5473 10 10 10.2 pb

ism 

∗ 11,180 6 6 2.3 sh

letter ∗ 20,0 0 0 16 16 3.9 vo

satim 

∗ 6430 36 36 9.7 ys

compu ∗ 13,657 20 20 3.8 ys

segm 

∗ 2310 19 19 14.3 gl

oil ∗ 937 49 49 4.4 ne

estate ∗ 5322 12 12 12 w

hypo ∗ 20 0 0 24 6 6.1 ca

boun ∗ 3505 175 0 3.5 fla

cred ∗ 10 0 0 20 7 30 kd

hrt-v ∗ 133 9 4 23.3 ve

ab9-18 † 731 8 7 5.7 w
Selecting a proper base classifier learning algorithm

 Algorithm 1 , step 1.3) is crucial as our method relies on good

osterior probability estimates at the test time. Previous work

as shown that bagged probabilistic decision trees (DT) provide

ood posterior probability estimates [22] . These are, in fact, more

eliable than other classifiers such as logistic regression [22] . Here,

e employ unpruned J48 decision trees, an implementation of

he C4.5 trees available in the “RWeka” package [30,36] . Even

hough it is common to apply Laplace smoothing to the leaf

robabilities of the individual decision trees, it can be detrimen-

al for imbalanced data [37] . Therefore, we did not use Laplace

moothing. 

In order to evaluate the generality of our method, we also

mployed neural networks (NN) as base classifiers. Bagged neu-

al networks are known to offer well calibrated posterior proba-

ility estimates [23] , and thus we hypothesized that this would

e a suitable choice for our method. We used a single hidden

ayer with logistic units and softmax output, implemented with

he “nnet” package. Following a rule of thumb, we set the number

f hidden units to 2/3 of the input dimension plus the number of

lasses [38] . 

We studied the effect of the number of base classifiers by vary-

ng them in {5, 10, 15, 25, 50, 100}. We ran 5 × 2-fold cross-

alidation for each method on each data set. The Friedman test was

sed to test if there were differences across the methods and if the

est passed at 95% significance, a posthoc Nemenyi test was per-

ormed to identify any pairwise differences [39] . A paired Wilcoxon

ank sums test was used to compare two methods directly. 

.1. Datasets 

We used 36 imbalanced binary data sets ( Table 2 ): 14

rom the HDDT repository ( http://www3.nd.edu/ ∼dial/hddt/ ), 19

rom the KEEL repository ( http://sci2s.ugr.es/keel/imbalanced.php ),

nd three from the UCI repository ( https://archive.ics.uci.edu/ml/

atasets.html ). Note that the evaluation with neural network en-

embles includes 26 data sets that contain only numerical at-

ributes. Only the complete instances of data were used and any

onstant attributes were removed. Table 2 shows a summary of the

atasets used in our experiments. The attributes of the data sets

re numerical, categorical or numerical-categorical mixed. For the

ulticlass setting, we used 15 data sets from the KEEL repository

 Table 3 ). 
 

∗ and KEEL † repositories (names were shortened for 

ataset #Inst #Attr #Num %Min 

-y † 277 9 0 29.2 

0vs4 † 173 13 13 7.5 

oli4 † 336 7 7 5.9 

b † 306 3 3 26.5 

d7_xvs1 † 443 7 7 8.3 

-1-3vs4 † 472 10 10 5.9 

ut-0vs4 † 1829 9 9 6.7 

w0 † 988 13 13 9.1 

t-2vs4 † 514 8 8 9.9 

t4 † 1484 8 8 3.4 

ass6 † 214 9 9 13.5 

w-th1 † 215 5 5 16.3 

isc † 683 9 9 34.5 

r-gd † 1728 6 0 4 

re-F † 1066 11 0 4 

d † 1642 41 26 3.2 

h0 † 846 18 18 23.5 

-red-4 † 1599 11 11 3.3 

http://www.r-project.org/
http://www3.nd.edu/~dial/hddt/
http://sci2s.ugr.es/keel/imbalanced.php
https://archive.ics.uci.edu/ml/datasets.html
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Table 3 

Overview of the multiclass data sets, all from the KEEL repository. 

Dataset #Inst #Attr #Num %Min #Class 

ontraceptive 1473 9 6 22.6 3 

dermatology 366 34 34 5.5 6 

balance 625 4 4 7.8 3 

penbased 1100 16 16 9.5 10 

shuttle 2175 9 9 0.09 5 

wine 178 13 13 27 3 

yeast 1484 8 8 0.3 10 

pageblocks 548 10 10 0.6 5 

thyroid 720 21 21 2.4 3 

ecoli 336 7 7 0.6 8 

autos 159 25 15 1.9 6 

glass 214 9 9 4.2 6 

new-thyroid 215 5 5 13.9 3 

hayes-roth 132 4 4 22.7 3 

lymphography 148 18 3 1.3 4 
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.2. Methods used for comparison 

For the binary class setting, we included EB-bagging as the

aseline method along with RB-bagging, SMOTE-bagging and RNB-

agging as state-of-the-art methods (see Section 2.4 for details).

he parameters of SMOTE were set to the commonly used setting

f 500% oversampling of the minority class with 5 nearest neigh-

ors and 100% sampling of the majority class. To investigate the

enefit of using an ensemble in PT-bagging, we additionally in-

luded a single classifier (denoted as “single”) that used the com-

lete training data to learn, and employed the same threshold-

oving mechanism as PT-bagging and identical parameters as its

ase classifiers. 

For completeness, we compared Platt scaling [40] and PT-

agging on binary data sets. Platt scaling is a well-known posthoc

alibration method that transforms continuous model outputs into

calibrated) probability estimates. It firstly fits a logistic regres-

ion model to the outputs with the class labels as the depen-

ent variable. To avoid over-fitting, we used data from 3-fold cross-

alidation with transformed class labels derived from the training

et, as in the original paper [40] . This logistic model was then ap-

lied to the test set outputs to obtain calibrated probabilities. A

hreshold of 0.5 was finally applied to the calibrated probabilities

o obtain the test class labels. If the posteriors are indeed cali-

rated after Platt scaling then this setting should yield good perfor-

ance. We deemed its inclusion as relevant since, like our method,

latt scaling is an easy-to-apply a posteriori correction of the model

utputs. 

.3. Performance evaluation 

We evaluate the methods on three performance measures: area

nder the PR curve (AUCPR), macro-accuracy and macro F1-score

see Section 2.1 for details). Note that AUCPR is computed using

he posterior probability estimates while the other two measures

equire class label assignments. 

The methods considered here differ in two important aspects:

1) the resampling mechanism and (2) the threshold used. Each re-

ampling mechanism may require its own threshold to achieve op-

imal performance. However, often a standard threshold is used in

ractice (e.g., 0.5 for EB- and RB-bagging). To evaluate the perfor-

ance independently of the threshold, we devised a novel scheme

alled the full potential. The full potential of a method is defined as

he best performance achieved over all possible thresholds on the

est set. A method’s performance close to its full potential means

hat the threshold used is more attuned to the optimal threshold

or that method. We approximated the full potential by searching

he optimal threshold over a grid from 0 to 1 in steps of 0.01. 
Finally, we used the stratified Brier score (mean squared error)

o evaluate the calibration of the posterior probabilities. The Brier

core of class k is calculated as the average squared differences be-

ween the estimated probability of the examples from class k (i.e.̂ P ( y = k | x i ) ) and a perfectly confident probabilistic prediction (i.e.,

): 

 S k = 

1 

N k 

∑ 

y ∗
i 
= k 

(
1 − ̂ P ( y = k | x i ) 

)2 
(5) 

where N k is the number of examples of class k and y ∗
i 

= k refers

o those examples for which k is the true class label. Averaging

he Brier score of all the classes gives the stratified Brier score.

he stratified Brier score is more appropriate when there is class

mbalance since it gives equal importance to all the classes and

hus allows any miscalibration of the minority classes to be spotted

41] . 

. Results and discussion 

In this section, we compare the performance of the proposed

ethod with other state-of-the-art methods and provide further

mpirical insights. For brevity, when ensembles of neural networks

erformed similarly to those of decision trees, the results from

eural networks ensembles are omitted. Unless otherwise indi-

ated, we report results on ensembles with 100 base classifiers. 

.1. Binary data sets 

We first investigated the effects of the ensemble size ( Fig. 1 ). It

s worth mentioning that, unsurprisingly, the area under the ROC

urve showed a much more cluttered picture, which we omit in

he interest of space. 

Overall, the following general observations can be made: (1)

ll methods show improvement with increasing ensemble size in

ll performance measures. (2) PT MA -, RB- and EB-bagging perform

etter on macro-accuracy while PT F1 -, SMOTE- and RNB-bagging

erform better on the macro F1-score. This shows that different re-

ampling mechanisms are suitable for different performance mea-

ures; (3) PT-bagging – with appropriate thresholds – performed

ell in each of the evaluated measures, while the rest of meth-

ds performed poorly in at least one of them, e.g., RB-bagging per-

ormed poorly in macro F1-score and AUCPR, while SMOTE- and

NB-bagging performed poorly in macro-accuracy. Finally, (4) as

xpected, EB- and RB-bagging performed similarly (although RB-

agging generally fared better with decision trees) and RNB- and

MOTE-bagging did not differ significantly. We discuss these re-

ults in more detail below. 

.1.1. The area under the precision-recall curve (AUCPR) 

As can be readily observed, PT-, SMOTE- and RNB-bagging

howed, on average, overall better performance than EB- and RB-

agging on AUCPR for all ensemble sizes ( Fig. 1 , left). This indicates

hat PT-, SMOTE- and RNB-bagging are generally able to achieve

omparatively higher average precision and recall (F-measures).

he Friedman test revealed a significant difference between the

ethods ( P < 3e − 12, for both DT and NN ensembles). 

The posthoc pairwise Nemenyi tests with DT ensembles showed

 nearly significant difference between PT-bagging and EB-bagging

 P ≈ 0.062), and between RNB- and EB-bagging ( P ≈ 0.083). Note

hat lower AUCPR generally implies a lower potential for the F-

easures, irrespective of the threshold used. Thus, when using DT

nsembles, methods based on undersampling alone (i.e., EB- and

B-bagging) are likely to have a lower F1-score (as shown below).

he single classifier clearly showed a lower AUCPR than the PT-

agging and rest of the methods ( P < 1.5e − 6). 
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Fig. 1. Average test performance across datasets for different numbers of classifiers in AUCPR (left), macro-accuracy (middle) and macro F1 (right). The first row shows 

results for DT ensembles and second row for NN ensembles. The interpolated lines are shown for convenience. 
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With NN ensembles, RB-bagging was significantly (or nearly

significantly) worse than PT-, SMOTE- and RNB-bagging ( P ≈ 0.058,

0.065 and 0.021, respectively). All the methods performed signifi-

cantly better than the single classifier ( P < 0.001). No other signif-

icant differences were found. 

The choice of base classifiers (either DT or NN) did not make a

significant difference in any of the method’s performance ( P > 0.17

for all Wilcoxon tests on 26 data sets). This aligns with our claim

that PT-bagging can be used with different choices of base classi-

fiers. 

5.1.2. Macro-accuracy 

Fig. 1 (middle) shows that resampling methods offer similar or

higher macro-accuracy compared to PT MA -bagging when a small

number of classifiers were employed. This aligns with Maloof’s

[20] findings which showed that undersampling and threshold-

moving perform similarly in terms of ROC and macro-accuracy

when a single classifier is employed. However, the performance

of PT MA -bagging improved substantially with larger ensembles (25

base classifiers or more), indicating that once the variance is re-

duced through bagging, the error that is left comes mostly from

the bias (since bagging reduces variance but not bias). This result

suggests that the bias of PT MA -bagging is lower than that of the

other methods. 

PT MA -bagging showed the highest number of wins as well as

fewer losses compared to other methods ( Table 4 , left), espe-

cially with DT, where it obtained almost twice as many wins as

losses against the second best performing method (RB-bagging).

The Friedman test revealed a significant difference between the

methods ( P < 1e − 11 for both, DT and NN ensembles). 

For DT ensembles, the posthoc pairwise Nemenyi tests showed

that PT MA -bagging performed significantly better than EB-, SMOTE-

and RNB-bagging (all P < 0.03) and the single classifier

( P < 1e − 10). None of the remaining differences were significant. 
NN ensembles showed a similar trend of pairwise differences

s the DT ensembles, although in this case PT MA -bagging was only

ignificantly better than SMOTE-bagging ( P ≈ 0.021) and the single

lassifier ( P < 1.7e − 9). It should be noted, however, that it was

ore difficult to obtain statistical significance with NN ensembles

s fewer data sets were used. 

It is also worth noting that the type of the base classifier had

o significant effect on a method’s performance (Wilcoxon test, P

 0.8 for all comparisons of a method using DT against the same

ethod using NN) except for the single classifier which performed

etter with DT than with NN ( P ≈ 0.01). 

Symmetry of class recalls: In order to gain insight into the bias

f the methods toward predicting either class we tested the null

ypothesis that, for each method, the difference between the class

ecalls ( Fig. 2 ), i.e., the two components of the macro-accuracy, is

qual to zero using a one sample t -test. With DT ensembles, the

ull hypothesis was rejected for all methods ( P < 0.003) except for

T MA -bagging ( P ≈ 0.18). With NN ensembles, a similar symmetry

as observed for PT MA -bagging ( P ≈ 0.42). In this case, EB-bagging

as the only other method that did not show significantly asym-

etric class recalls ( P ≈ 0.46). 

These results suggest that PT MA -bagging is not biased toward

ither class. Interestingly, only EB-bagging (using DT) showed

igher recall for the minority class ( Fig. 2 , left), suggesting a possi-

le overcompensation for the minority class due to the undersam-

ling. 

Full potential : We then tested the full potential of the methods

or macro-accuracy, i.e., which we define as their maximum macro-

ccuracy that would be attainable if the optimal threshold for each

est set were known. The Friedman test revealed a significant dif-

erence between methods ( P < 0.001 both DT and NN ensembles). 

Post-hoc pairwise comparisons with DT ensembles revealed

hat SMOTE-bagging ( P ≈ 0.04) and PT MA -bagging ( P ≈ 0.1) have

respectively) a significantly and nearly-significantly higher full
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Table 4 

Win/Tie/Loss tables. Each element expresses how many times the method in the row wins/ties/loses against the method in the column. The top tables 

show results with DT methods, and the bottom tables show results with NN methods. 

Macro-accuracy Macro F1-score 

EB RB SMOTE RNB Single EB RB SMOTE RNB Single 

PT MA 27/0/9 23/1/12 24/1/11 23/1/12 31/2/3 PT F1 33/0/3 31/1/4 19/2/15 19/1/16 30/0/6 

EB – 6/4/26 20/2/14 19/1/16 31/0/5 EB – 2/2/32 1/1/34 1/2/33 10/0/26 

RB – – 24/1/11 23/4/9 33/0/3 RB – – 5/2/29 6/2/28 15/0/21 

SMOTE – – – 15/4/17 30/1/5 SMOTE – – – 18/2/16 28/0/8 

RNB – – – – 34/1/1 RNB – – – – 30/0/6 

EB RB SMOTE RNB single EB RB SMOTE RNB single 

PT MA 13/1/12 16/0/10 20/0/6 15/2/9 26/0/0 PT F1 20/2/4 20/0/6 14/1/11 11/4/11 24/0/2 

EB – 15/2/9 19/1/6 14/1/11 26/0/0 EB – 4/0/22 4/1/21 3/1/22 12/0/14 

RB – – 19/1/6 13/1/12 26/0/0 RB – – 6/2/18 5/2/19 13/0/13 

SMOTE – – – 4/2/20 22/0/4 SMOTE – – – 13/2/11 23/1/2 

RNB – – – – 26/0/0 RNB – – – – 22/0/4 

Fig. 2. Average recall across data sets for different numbers of classifiers, separated for the minority class (solid line) and the majority class (dashed line). The left plot 

shows results for DT ensembles and right plot for NN ensembles. 

Table 5 

The average difference between the actual performance and full potential. The first row shows results for DT methods and second row for NN methods. 

Macro-accuracy Macro F1-score 

PT MA EB RB SMOTE RNB single PT F1 EB RB SMOTE RNB single 

DT 1.9% 2.5% 2.3% 4.7% 3.4% 0.9% 2.6% 9.5% 6.9% 2.9% 3.2% 1.1% 

NN 1.7% 2.0% 2.1% 5.9% 3.3% 0.6% 2.9% 6.5% 5.5% 2.9% 3.6% 0.9% 
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otential than EB-bagging. Again, PT-bagging and the rest of the

nsemble methods clearly outperformed the single classifier in

erms of potential ( P < 1e − 10). The rest of the pairwise differ-

nces were not significant. 

With NN ensembles, the trend changed for RB-bagging, now

xhibiting generally lower potential for macro-accuracy than the

ther methods, with significantly (or nearly significantly) lower po-

ential than RNB- and SMOTE-bagging ( P ≈ 0.031 and P ≈ 0.081,

espectively). This drop in the full potential of RB-bagging when

sing NN can also be appreciated from its lower averaged AUCPR

n Fig. 1 as compared to, for example, EB-bagging. This seems to

uggest that RB-bagging might not generalize well across base clas-

ifier choices, conceivably because it might be leveraging proper-

ies of decision trees. To our knowledge, no other studies have an-

lyzed the performance of RB-bagging with base classifiers other

han DT and thus more analyses are needed. 

Finally, the single classifier showed lower potential than PT-

agging ( P < 8e − 7) and the rest of the ensembles ( P < 0.002). 

To shed light on how well-tuned the thresholds employed for

ach method were, we compared their actual and full potential

acro-accuracy. The average absolute difference between the full

otential macro-accuracy and the actual macro-accuracy was cal-

ulated across cross-validation folds and datasets ( Table 5 , left).

T -bagging performed closer to its full potential than the other
MA 
nsemble methods. This suggests that the prior-based threshold

mployed by PT MA -bagging is a close-to-optimal choice. The sin-

le classifier performed closest to its full potential macro-accuracy,

owever its full potential was markedly lower than the other

ethods – as discussed above – yielding thus a lower performance

 Table 4 ). 

.1.3. Macro F1-score and plug-in potency 

An important advantage of our method is that a learned ensem-

le can be used to make predictions that optimize any measure of

nterest by applying an appropriate threshold a posteriori . We ap-

lied the proposed threshold to maximize the macro F1-score (see

ection 3.2 ) to the outputs of the same PT-bagging ensembles used

bove. The resulting method is termed PT F1 -bagging ( Fig. 1 , right). 

The Friedman test revealed a significant difference between

he methods for DT ( P < 0.0 0 08; P < 0.1 for NN). Post-hoc

ests showed that PT F1 -bagging had a significantly higher macro

1-score than PT MA -bagging, EB-bagging, and RB-bagging (all P

 0.0 0 08) for both DT and NN ensembles. However, with either

hoice of the base classifier, PT F1 -bagging was not significantly dif-

erent from RNB- or SMOTE-bagging. As in the previous measures,

he single classifier performed markedly worse than PT F1 -, SMOTE-

nd RNB-bagging ( P < 0.002) with either base classifier, while not
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Fig. 3. Reliability plots for DT ensembles with 100 classifiers; spectf (UCI, left), pb-1-3vs4 (KEEL, middle) and satim (HDDT, right). We used 10 bins to discretize the posterior 

probability for the minority class ̂ P ( y = 1 | x ) ( x -axis) for all five runs and two folds. The corresponding observed frequencies of the minority class ( y -axis) were calculated 

for each bin (i.e., the “true” P( y = 1 | x ) ). A method lining up with the diagonal is well calibrated while values below the diagonal are overestimating the probability of the 

minority class. 
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worse than EB-bagging with NN ( P ≈ 0.99) and not worse than

RB-bagging with both NN and DT ( P > 0.91). 

Again, none of the methods showed significant differences

when comparing their performances with DT and NN ensembles

( P > 0.17 for all Wilcoxon tests). 

Full potential : We found significant differences between the

methods in terms of the full potential of the macro F1-score

(Friedman test, P < 0.055 for both DT and NN). With DT ensem-

bles, pairwise posthoc tests revealed only one trend level differ-

ence between PT F1 - and EB-bagging ( P ≈ 0.1) in favor of PT F1 -

bagging. With NN ensembles, as noted above with macro-accuracy,

RB-bagging’s potential generally decreased showing a significantly

lower full potential than PT F1 -bagging ( P ≈ 0.04). As expected, the

single classifier had significantly lower full potential than all the

ensembles with either type of base classifier ( P < 0.0022). No other

differences were significant. 

Finally, the averaged differences between the actual and the full

potential macro F1-score show that PT F1 -bagging – which uses our

novel threshold – performed closer to its full potential than the

rest of ensemble methods ( Table 5 , right). Also, SMOTE- and RNB-

bagging performed closer to optimal than EB- and RB-bagging. Ad-

ditionally, the single classifier performed closest to its optimal per-

formance, yet again, its full potential and actual performance were

markedly lower than the ensemble methods ( Table 4 ). 

Taken together, these results imply that the methods that ex-

hibit a performance clearly lower to that of their full potential

could do better if proper thresholds could be found, which is of-

ten not possible without using computationally expensive tuning

procedures. Overall, the results above support our claim that PT-

bagging passes as a plug-in method where the threshold can be

set a posteriori according to the performance measure of interest. 

5.1.4. Posterior probability calibration 

So far, we have shown that PT-bagging performs competitively

on three different measures. In particular, good performance in the

macro F1-score and macro-accuracy ( Theorem 1 ) is only possible

if posterior probabilities are well calibrated. In the following, we

argue that PT-bagging estimates well calibrated posterior probabil-

ities. 

An empirical study by Niculescu-Mizil and Caruana [23] showed

that bagged DT and NN ensembles estimate well calibrated poste-

rior probabilities, making additional calibration – e.g., with Platt

scaling – unnecessary. However, probability calibration is a rel-

atively understudied problem for imbalanced data. In this di-

rection, a recent study proposes to correct the calibration for

undersampling [14] and another study proposes the use of an
ndersampling-based variation of Platt scaling to obtain calibrated

robabilities [42] . These studies use the (stratified) Brier score (see

q. (5 )) to quantify calibration. Wallace and Dahabreh [41] found

hat undersampling combined with bagging leads to a lower Brier

core for the minority class, i.e., a better calibration for this class,

ithout sacrificing the overall Brier score. We found similar re-

ults in our experiments with both DT and NN ensembles. Specif-

cally, the rebalancing methods showed a significantly lower Brier

core for the minority class than PT-bagging and the single clas-

ifier, while PT-bagging fared better with the majority class than

he rebalancing methods and the single classifier (Friedman test

 < 2e − 16; all pairwise posthoc Nemenyi tests P < 0.018 for both

T and NN based methods). 

This seemingly negative result for PT-bagging, i.e., a higher Brier

core for the minority class than the majority class, can be at-

ributed to a potential shortcoming of the stratified Brier score.

he Brier score for class k decreases with crisp posteriors, e.g., the

rier score for the minority class would become zero if all poste-

ior probabilities for this class were 1 (see Eq. (5 )). Thus, the in-

ormation in the non-crisp posteriors is ignored by the Brier score

nd overestimated probabilities will, wrongly, lead to a lower Brier

core. This suggests that the stratified Brier score might not be ap-

ropriate for qualifying posterior calibration over imbalanced data,

s it is not necessarily indicative of other performance measures.

eveloping new measures to quantify calibration is beyond the

cope of this paper. 

Reliability plots provide an alternative visual way to evaluate

alibration quality [23] , overcoming the aforementioned deficien-

ies. Three examples of reliability plots are shown in Fig. 3 . Visual

nspection revealed that PT-bagging probabilities were well cali-

rated (i.e., close to the diagonal line) for the majority of the data

ets (21 out of 36 DT ensembles, and 15 out of 26 NN ensembles;

ee Supplementary material). In contrast, all the other methods

ended to systematically overestimate the posteriors for the minor-

ty class (hence their lower Brier scores). Moreover, whenever PT-

agging estimated miscalibrated posteriors (i.e., not aligned with

he diagonal), the other methods failed too. These results suggest

hat PT-bagging estimates relatively well-calibrated posteriors. 

.1.5. Comparison with Platt scaling 

To investigate the effect of direct calibration, we applied Platt

caling to the posterior probabilities of the ensembles with 100

lassifiers used above, followed by a threshold of 0.5. With the

T ensembles, PT MA -bagging outperformed Platt scaling in macro-

ccuracy (Paired Wilcoxon test, P < 1e − 8; Win/Tie/Loss = 34/0/2).

latt scaling performed relatively better in the macro F1-score.
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evertheless, PT F1 -, SMOTE- and RNB-bagging still outperformed

latt scaling (Paired Wilcoxon test, P < 0.08 in all comparisons). 

Results with NN ensembles showed a similar picture for

he macro-accuracy measure, where PT MA -bagging clearly outper-

ormed Platt scaling ( P < 1e − 6; Win/Tie/Loss = 21/1/4). How-

ver, in this case, the differences between Platt scaling and PT F1 -,

MOTE- and RNB-bagging were non-significant (all P > 0.4). 

In conclusion, probability calibration using Platt scaling did not

rovide an improvement over the methods investigated in this ar-

icle. This corroborates previous results showing that posterior cal-

bration for bagged DT and NN ensembles is often unnecessary as

heir probability estimates are generally well calibrated [23] . 

.2. Multiclass data sets 

An important advantage of our method is that it can be di-

ectly extended to the multiclass setting. For multiclass data, the

hreshold-moving technique can be applied by dividing the poste-

iors by appropriate probabilities (see Theorem 1 ). For instance, to

aximize macro-accuracy, the thresholds of PT MA -bagging are set

qual to the prior probabilities of the respective class (see Section

.1 and Algorithm 1 ). We evaluated this approach on 15 multiclass

ata sets ( Table 3 ). For comparison, we used the UnderBagging to

verBagging method (UnderOver) [43] . This method uses under-

r over-sampled instances of different classes in proportion to the

ajority class size controlled by a parameter a which corresponds

o the sampling rate of the largest class. The parameter a changes

he ensemble from UnderBagging ( a = 0) to OverBagging ( a = 100).

otice that UnderOver ( a = 0) is the multiclass extension of EB-

agging in which the majority classes are undersampled to match

he least frequent class. We varied the parameter a in {0, 10, 25,

0, 100}. 

We used similar experimental settings to those used for the bi-

ary data sets, i.e., simple bootstrap sampling for PT-bagging and

 × 2-fold cross-validation. Following their good performance in

inary data sets, here we employed only DT ensembles of size 100.

As there are many methods (PT-bagging and five competing

ethods) relative to the number of data sets, the Friedman test is

nlikely to reveal differences. Therefore, here we only performed

airwise tests. Firstly, we selected the single competitor method

ith the highest average macro-accuracy. This method – with an

verage macro-accuracy of 0.756 – was UnderOver-bagging (with

 = 50). This method and PT MA -bagging (average macro-accuracy

.789) showed a trend-level difference (Paired Wilcoxon test, P

0.0946). Furthermore, of the total 15 multiclass data sets, PT MA -

agging had eight overall wins against the five competitors, while

he next best method was UnderOver-bagging (with a = 10) with

our wins. This result suggests that PT-bagging can be successfully

mployed for multiclass data sets when appropriate thresholds are

vailable, although further tests are needed to confirm stringent

tatistical significance. 

. Conclusions and future work 

We proposed a simple plug-in method, PT-bagging, for imbal-

nced classification. Our method relies on simple bootstrap sam-

ling – which preserves the natural class distribution – to create

 bagging ensemble followed by threshold-moving to assign class

abels. Our results and analyses showed that PT-bagging, unsurpris-

ngly, outperforms the single classifier baseline and performs com-

etitively to four state-of-the-art ensemble methods. Furthermore,

t does so in three performance measures: AUCPR, macro-accuracy

nd macro F1-score . We showed that the class priors provide the

ptimal thresholds for maximizing the macro-accuracy measure,

nd we introduced a new intuitive threshold for maximizing the

acro F1-score and demonstrated its effectiveness. 
We showed that PT-bagging (combined with an appropriate

hreshold when needed) performs at least as well as the best com-

etitor method in each of the three performance measures and

oes not underperform in any of them. Critically, it does so by

eusing the same ensemble models across performance measures.

y contrast, all other methods proved to be weak in at least one

f the three measures. We observed that the undersampling-only

ethods (EB- and RB-bagging) were more suitable for maximizing

he macro-accuracy, while methods combining synthetic oversam-

ling with undersampling (SMOTE- and RNB-bagging) fared better

ith the macro F1-score. Thus avoiding the necessity of choosing

n arbitrary threshold or identifying a measure-specific threshold. 

Our analysis provided several additional insights. Specifically,

e found: (i) PT-bagging is less biased toward either class than

ther methods, (ii) it performs close to its full potential, (iii) it

erforms well with different choices of base classifier, (iv) PT-

agging can be directly extended to multiclass data when appro-

riate thresholds are available; and finally, (v) a potential short-

oming of the Brier score in quantifying probability calibration and.

Taken together, our work provides a competitive and simple al-

ernative to other rebalancing- and synthetic oversampling-based

nsemble methods, which are often the first choice to deal with

lass imbalance. We hope that our results and analyses will in-

rease interest in the threshold-moving technique and provide a

asis for developing new threshold-based methods for imbalanced

lassification. 

An important but understudied question is whether to use

he natural class distribution for learning [19] . Weiss and Provost

16] studied this question empirically and concluded that generally

 different class distribution leads to better performance. Our re-

ults stand in contrast to their conclusion. An important difference

etween their procedures and ours, which can at least partially

xplain, the different conclusions, is the use of a single decision

ree versus an ensemble. As our results show, a single classifier as

ell as simple bootstrap bagged small ensembles performs poorly,

ut the performance improves with the ensemble size. Considering

his, we conclude that a large enough bagging ensemble success-

ully models the data with its natural class distribution. 

We can take several possible directions in the future. One such

ossible direction would be to use intrinsic data properties to

mprove the sampling mechanism (see, e.g., [7] ). Such methods

an leverage properties of the data and help with difficult situ-

tions, e.g., small disjuncts of the minority class. Additionally, as

ur method avoids computationally expensive retraining, we aim

o investigate the suitability of our method in environments with

ynamic costs. 
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