| Hauptseite > Publikationsdatenbank > Predicting personality from network-based resting-state functional connectivity > print |
| 001 | 845281 | ||
| 005 | 20210129233345.0 | ||
| 024 | 7 | _ | |a 10.1007/s00429-018-1651-z |2 doi |
| 024 | 7 | _ | |a 0340-2061 |2 ISSN |
| 024 | 7 | _ | |a 1432-0568 |2 ISSN |
| 024 | 7 | _ | |a 1863-2653 |2 ISSN |
| 024 | 7 | _ | |a 1863-2661 |2 ISSN |
| 024 | 7 | _ | |a pmid:29572625 |2 pmid |
| 024 | 7 | _ | |a WOS:000434980400013 |2 WOS |
| 024 | 7 | _ | |a 2128/21651 |2 Handle |
| 024 | 7 | _ | |a altmetric:34860539 |2 altmetric |
| 037 | _ | _ | |a FZJ-2018-02562 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Nostro, Alessandra D. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Predicting personality from network-based resting-state functional connectivity |
| 260 | _ | _ | |a Berlin |c 2018 |b Springer |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1529330625_26830 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Personality is associated with variation in all kinds of mental faculties, including affective, social, executive, and memory functioning. The intrinsic dynamics of neural networks underlying these mental functions are reflected in their functional connectivity at rest (RSFC). We, therefore, aimed to probe whether connectivity in functional networks allows predicting individual scores of the five-factor personality model and potential gender differences thereof. We assessed nine meta-analytically derived functional networks, representing social, affective, executive, and mnemonic systems. RSFC of all networks was computed in a sample of 210 males and 210 well-matched females and in a replication sample of 155 males and 155 females. Personality scores were predicted using relevance vector machine in both samples. Cross-validation prediction accuracy was defined as the correlation between true and predicted scores. RSFC within networks representing social, affective, mnemonic, and executive systems significantly predicted self-reported levels of Extraversion, Neuroticism, Agreeableness, and Openness. RSFC patterns of most networks, however, predicted personality traits only either in males or in females. Personality traits can be predicted by patterns of RSFC in specific functional brain networks, providing new insights into the neurobiology of personality. However, as most associations were gender-specific, RSFC–personality relations should not be considered independently of gender. |
| 536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |f POF III |x 0 |
| 536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |f H2020-Adhoc-2014-20 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Müller, Veronika |0 P:(DE-Juel1)131699 |b 1 |
| 700 | 1 | _ | |a Varikuti, Deepthi |0 P:(DE-Juel1)161460 |b 2 |
| 700 | 1 | _ | |a Pläschke, Rachel |0 P:(DE-Juel1)161305 |b 3 |
| 700 | 1 | _ | |a Hoffstaedter, Felix |0 P:(DE-Juel1)131684 |b 4 |
| 700 | 1 | _ | |a Langner, Robert |0 P:(DE-Juel1)131693 |b 5 |
| 700 | 1 | _ | |a Patil, Kaustubh |0 P:(DE-Juel1)172843 |b 6 |
| 700 | 1 | _ | |a Eickhoff, Simon |0 P:(DE-Juel1)131678 |b 7 |
| 773 | _ | _ | |a 10.1007/s00429-018-1651-z |0 PERI:(DE-600)2303775-1 |n 6 |p 2699–2719 |t Brain structure & function |v 223 |y - |x 1863-2661 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/845281/files/Nostro2018_Article_PredictingPersonalityFromNetwo.pdf |y Restricted |
| 856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/845281/files/Nostro2018_Article_PredictingPersonalityFromNetwo.gif?subformat=icon |y Restricted |
| 856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/845281/files/Nostro2018_Article_PredictingPersonalityFromNetwo.jpg?subformat=icon-180 |y Restricted |
| 856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/845281/files/Nostro2018_Article_PredictingPersonalityFromNetwo.jpg?subformat=icon-640 |y Restricted |
| 856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/845281/files/Nostro2018_Article_PredictingPersonalityFromNetwo.jpg?subformat=icon-1440 |y Restricted |
| 856 | 4 | _ | |y Published on 2018-03-23. Available in OpenAccess from 2019-03-23. |u https://juser.fz-juelich.de/record/845281/files/BSAF-D-17-00302_R2.pdf |
| 856 | 4 | _ | |y Published on 2018-03-23. Available in OpenAccess from 2019-03-23. |x pdfa |u https://juser.fz-juelich.de/record/845281/files/BSAF-D-17-00302_R2.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:845281 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131699 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)161460 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131684 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131693 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)172843 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131678 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |2 G:(DE-HGF)POF3-500 |v Connectivity and Activity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BRAIN STRUCT FUNCT : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b BRAIN STRUCT FUNCT : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|