000845292 001__ 845292
000845292 005__ 20240711092258.0
000845292 0247_ $$2doi$$a10.1111/jace.15430
000845292 0247_ $$2ISSN$$a0002-7820
000845292 0247_ $$2ISSN$$a1551-2916
000845292 0247_ $$2WOS$$aWOS:000431661300043
000845292 037__ $$aFZJ-2018-02570
000845292 082__ $$a660
000845292 1001_ $$0P:(DE-Juel1)166023$$aYin, Xiaoyan$$b0$$eCorresponding author
000845292 245__ $$aCombined experimental and ab initio based determination of the thermal expansion of La0.5Sr0.5Co0.25Fe0.75O3
000845292 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2018
000845292 3367_ $$2DRIVER$$aarticle
000845292 3367_ $$2DataCite$$aOutput Types/Journal article
000845292 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552643204_21951
000845292 3367_ $$2BibTeX$$aARTICLE
000845292 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845292 3367_ $$00$$2EndNote$$aJournal Article
000845292 520__ $$aThe thermal expansion of La0.5Sr0.5Co0.25Fe0.75O3 (LSCF55) is investigated both by first principles phonon calculations combined with the quasi‐harmonic approximation (QHA) and by experimental approaches. Within the framework of the QHA, the volumetric thermal expansion coefficient of rhombohedral LSCF55 is calculated as αV,GGA = 50.34 × 10−6 K−1. For comparison, the lattice expansion and the volume expansion of LSCF55 grain are measured by in situ high‐temperature X‐ray diffractometer (HT‐XRD). An anisotropic thermal expansion of rhombohedral LSCF55 with αa,hex = 10.89 × 10−6 K−1 and αc,hex = 21.18 × 10−6 K−1 is obtained. The volumetric thermal expansion coefficient is measured as αV,HT‐XRD = 43.17 × 10−6 K−1. In addition, the effectively isotropic expansion coefficients of a polycrystalline LSCF55 bar specimen are measured using a vertical high‐performance thermo‐mechanical analyzer and yield αl,bar specimen = 17.37 × 10−6 K−1 and αV,bar specimen = 52.11 × 10−6 K−1.
000845292 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000845292 536__ $$0G:(DE-Juel1)jiek2a_20161101$$aAb initio modelling of LSCF for SOFCs (jiek2a_20161101)$$cjiek2a_20161101$$fAb initio modelling of LSCF for SOFCs$$x1
000845292 588__ $$aDataset connected to CrossRef
000845292 7001_ $$0P:(DE-Juel1)165688$$aBeez, Alexander$$b1
000845292 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b2
000845292 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b3$$eCorresponding author
000845292 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.15430$$n7$$p3086-3093$$tJournal of the American Ceramic Society$$v101$$x0002-7820$$y2018
000845292 8564_ $$uhttps://juser.fz-juelich.de/record/845292/files/jace.15430.pdf$$yRestricted
000845292 8564_ $$uhttps://juser.fz-juelich.de/record/845292/files/jace.15430.gif?subformat=icon$$xicon$$yRestricted
000845292 8564_ $$uhttps://juser.fz-juelich.de/record/845292/files/jace.15430.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845292 8564_ $$uhttps://juser.fz-juelich.de/record/845292/files/jace.15430.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845292 8564_ $$uhttps://juser.fz-juelich.de/record/845292/files/jace.15430.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845292 8564_ $$uhttps://juser.fz-juelich.de/record/845292/files/jace.15430.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845292 909CO $$ooai:juser.fz-juelich.de:845292$$pVDB
000845292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166023$$aForschungszentrum Jülich$$b0$$kFZJ
000845292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165688$$aForschungszentrum Jülich$$b1$$kFZJ
000845292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b2$$kFZJ
000845292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b3$$kFZJ
000845292 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000845292 9141_ $$y2018
000845292 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845292 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2015
000845292 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845292 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845292 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845292 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845292 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845292 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845292 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845292 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845292 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845292 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845292 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845292 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000845292 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000845292 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000845292 980__ $$ajournal
000845292 980__ $$aVDB
000845292 980__ $$aI:(DE-Juel1)IEK-1-20101013
000845292 980__ $$aI:(DE-Juel1)IEK-2-20101013
000845292 980__ $$aI:(DE-82)080012_20140620
000845292 980__ $$aUNRESTRICTED
000845292 981__ $$aI:(DE-Juel1)IMD-1-20101013
000845292 981__ $$aI:(DE-Juel1)IMD-2-20101013