001     845292
005     20240711092258.0
024 7 _ |a 10.1111/jace.15430
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a WOS:000431661300043
|2 WOS
037 _ _ |a FZJ-2018-02570
082 _ _ |a 660
100 1 _ |a Yin, Xiaoyan
|0 P:(DE-Juel1)166023
|b 0
|e Corresponding author
245 _ _ |a Combined experimental and ab initio based determination of the thermal expansion of La0.5Sr0.5Co0.25Fe0.75O3
260 _ _ |a Oxford [u.a.]
|c 2018
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552643204_21951
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The thermal expansion of La0.5Sr0.5Co0.25Fe0.75O3 (LSCF55) is investigated both by first principles phonon calculations combined with the quasi‐harmonic approximation (QHA) and by experimental approaches. Within the framework of the QHA, the volumetric thermal expansion coefficient of rhombohedral LSCF55 is calculated as αV,GGA = 50.34 × 10−6 K−1. For comparison, the lattice expansion and the volume expansion of LSCF55 grain are measured by in situ high‐temperature X‐ray diffractometer (HT‐XRD). An anisotropic thermal expansion of rhombohedral LSCF55 with αa,hex = 10.89 × 10−6 K−1 and αc,hex = 21.18 × 10−6 K−1 is obtained. The volumetric thermal expansion coefficient is measured as αV,HT‐XRD = 43.17 × 10−6 K−1. In addition, the effectively isotropic expansion coefficients of a polycrystalline LSCF55 bar specimen are measured using a vertical high‐performance thermo‐mechanical analyzer and yield αl,bar specimen = 17.37 × 10−6 K−1 and αV,bar specimen = 52.11 × 10−6 K−1.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
536 _ _ |a Ab initio modelling of LSCF for SOFCs (jiek2a_20161101)
|0 G:(DE-Juel1)jiek2a_20161101
|c jiek2a_20161101
|f Ab initio modelling of LSCF for SOFCs
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Beez, Alexander
|0 P:(DE-Juel1)165688
|b 1
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 2
700 1 _ |a Spatschek, Robert
|0 P:(DE-Juel1)130979
|b 3
|e Corresponding author
773 _ _ |a 10.1111/jace.15430
|0 PERI:(DE-600)2008170-4
|n 7
|p 3086-3093
|t Journal of the American Ceramic Society
|v 101
|y 2018
|x 0002-7820
856 4 _ |u https://juser.fz-juelich.de/record/845292/files/jace.15430.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845292/files/jace.15430.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845292/files/jace.15430.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845292/files/jace.15430.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845292/files/jace.15430.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845292/files/jace.15430.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:845292
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165688
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130979
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21