000845295 001__ 845295
000845295 005__ 20240711085648.0
000845295 0247_ $$2doi$$a10.1002/smll.201703717
000845295 0247_ $$2pmid$$apmid:29658174
000845295 0247_ $$2WOS$$aWOS:000434172700005
000845295 037__ $$aFZJ-2018-02573
000845295 041__ $$aEnglish
000845295 082__ $$a540
000845295 1001_ $$0P:(DE-HGF)0$$aSun, Xueliang$$b0$$eCorresponding author
000845295 245__ $$aHigh Capacity, Dendrite-Free Growth, and Minimum Volume Change Na Metal Anode
000845295 260__ $$aWeinheim$$bWiley-VCH$$c2018
000845295 3367_ $$2DRIVER$$aarticle
000845295 3367_ $$2DataCite$$aOutput Types/Journal article
000845295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536571371_28524
000845295 3367_ $$2BibTeX$$aARTICLE
000845295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845295 3367_ $$00$$2EndNote$$aJournal Article
000845295 520__ $$aNa metal anode attracts increasing attention as a promising candidate for Na metal batteries (NMBs) due to the high specific capacity and low poten-tial. However, similar to issues faced with the use of Li metal anode, crucial problems for metallic Na anode remain, including serious moss-like and den-dritic Na growth, unstable solid electrolyte interphase formation, and large infinite volume changes. Here, the rational design of carbon paper (CP) with N-doped carbon nanotubes (NCNTs) as a 3D host to obtain Na@CP-NCNTs composites electrodes for NMBs is demonstrated. In this design, 3D carbon paper plays a role as a skeleton for Na metal anode while vertical N-doped carbon nanotubes can effectively decrease the contact angle between CP and liquid metal Na, which is termed as being “Na-philic.” In addition, the cross-conductive network characteristic of CP and NCNTs can decrease the effective local current density, resulting in uniform Na nucleation. Therefore, the as-prepared Na@CP-NCNT exhibits stable electrochemical plating/strip-ping performance in symmetrical cells even when using a high capacity of 3 mAh cm−2 at high current density. Furthermore, the 3D skeleton structure is observed to be intact following electrochemical cycling with minimum volume change and is dendrite-free in nature.
000845295 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000845295 7001_ $$0P:(DE-HGF)0$$aZhao, Yang$$b1
000845295 7001_ $$0P:(DE-HGF)0$$aYang, Xiaofei$$b2
000845295 7001_ $$0P:(DE-HGF)0$$aKuo, Liang-Yin$$b3
000845295 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b4$$ufzj
000845295 7001_ $$0P:(DE-HGF)0$$aSun, Qian$$b5
000845295 7001_ $$0P:(DE-HGF)0$$aLiang, Jianneng$$b6
000845295 7001_ $$0P:(DE-HGF)0$$aWang, Biqiong$$b7
000845295 7001_ $$0P:(DE-HGF)0$$aLushington, Andrew$$b8
000845295 7001_ $$0P:(DE-HGF)0$$aLi, Ruying$$b9
000845295 7001_ $$0P:(DE-HGF)0$$aZhang, Huamin$$b10
000845295 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.201703717$$n20$$p1703717$$tSmall$$v14$$x1613-6810$$y2018
000845295 8564_ $$uhttps://juser.fz-juelich.de/record/845295/files/High%20Capacity%2C%20Dendrite-Free%20Growth%2C%20and%20Minimum%20Volume%20Change%20Na%20Metal%20Anode_2018.pdf$$yRestricted
000845295 8564_ $$uhttps://juser.fz-juelich.de/record/845295/files/High%20Capacity%2C%20Dendrite-Free%20Growth%2C%20and%20Minimum%20Volume%20Change%20Na%20Metal%20Anode_2018.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845295 909CO $$ooai:juser.fz-juelich.de:845295$$pVDB
000845295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845295 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845295 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845295 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2015
000845295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845295 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845295 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845295 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845295 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSMALL : 2015
000845295 9141_ $$y2018
000845295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b4$$kFZJ
000845295 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000845295 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000845295 980__ $$ajournal
000845295 980__ $$aVDB
000845295 980__ $$aI:(DE-Juel1)IEK-1-20101013
000845295 980__ $$aUNRESTRICTED
000845295 981__ $$aI:(DE-Juel1)IMD-2-20101013