TY  - JOUR
AU  - Sun, Xueliang
AU  - Zhao, Yang
AU  - Yang, Xiaofei
AU  - Kuo, Liang-Yin
AU  - Kaghazchi, Payam
AU  - Sun, Qian
AU  - Liang, Jianneng
AU  - Wang, Biqiong
AU  - Lushington, Andrew
AU  - Li, Ruying
AU  - Zhang, Huamin
TI  - High Capacity, Dendrite-Free Growth, and Minimum Volume Change Na Metal Anode
JO  - Small
VL  - 14
IS  - 20
SN  - 1613-6810
CY  - Weinheim
PB  - Wiley-VCH
M1  - FZJ-2018-02573
SP  - 1703717
PY  - 2018
AB  - Na metal anode attracts increasing attention as a promising candidate for Na metal batteries (NMBs) due to the high specific capacity and low poten-tial. However, similar to issues faced with the use of Li metal anode, crucial problems for metallic Na anode remain, including serious moss-like and den-dritic Na growth, unstable solid electrolyte interphase formation, and large infinite volume changes. Here, the rational design of carbon paper (CP) with N-doped carbon nanotubes (NCNTs) as a 3D host to obtain Na@CP-NCNTs composites electrodes for NMBs is demonstrated. In this design, 3D carbon paper plays a role as a skeleton for Na metal anode while vertical N-doped carbon nanotubes can effectively decrease the contact angle between CP and liquid metal Na, which is termed as being “Na-philic.” In addition, the cross-conductive network characteristic of CP and NCNTs can decrease the effective local current density, resulting in uniform Na nucleation. Therefore, the as-prepared Na@CP-NCNT exhibits stable electrochemical plating/strip-ping performance in symmetrical cells even when using a high capacity of 3 mAh cm−2 at high current density. Furthermore, the 3D skeleton structure is observed to be intact following electrochemical cycling with minimum volume change and is dendrite-free in nature.
LB  - PUB:(DE-HGF)16
C6  - pmid:29658174
UR  - <Go to ISI:>//WOS:000434172700005
DO  - DOI:10.1002/smll.201703717
UR  - https://juser.fz-juelich.de/record/845295
ER  -